Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2009, Vol. 14 ›› Issue (12): 1428-1435.
Previous Articles Next Articles
LIU Xiang, LIU Xiao-dong
Received:
2009-08-12
Revised:
2009-10-05
Published:
2020-10-20
CLC Number:
LIU Xiang, LIU Xiao-dong. Diabetes and ATP-binding cassette transporters[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2009, 14(12): 1428-1435.
Add to citation manager EndNote|Ris|BibTeX
URL: https://manu41.magtech.com.cn/Jweb_clyl/EN/
https://manu41.magtech.com.cn/Jweb_clyl/EN/Y2009/V14/I12/1428
[1] Schuierer MM, Langmann T.Molecular diagnosis of ATPbinding cassette transporter-related diseases[J].Expert Rev Mol Diagn, 2005, 5( 5):755-767. [2] Wang HB, LeCluyse EL.Role of orphan nuclear receptors in the regulation of drug-metabolising enzymes[J].Clin Pharmacokinet, 2003, 42( 15):1331-1357. [3] Gosselet F, Candela P, Sevin E, et al.Transcriptional profiles of receptors and transporters involved in brain cholesterol homeostasis at the blood-brain barrier:Use of an in vitro model[J].Brain Res, 2009, 1249:34-42. [4] Yvan-Charvet L, Ranalletta M, Wang N, et al.Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice[J].J Clin Invest, 2007, 117( 12):3900-3908. [5] Singaraja RR, Brunham LR, Visscher H, et al.Efflux and Atherosclerosis:The clinical and biochemical impact of variations in the ABCA1 gene[J].Arterioscler Thromb Vasc Biol, 2003, 23( 8):1322-1332. [6] Villarreal-Molina MT, Flores-DorantesMT, Arellano-Campos O, et al.Association of the ATP-binding cassette transporter A1 R230C variant with early-onset type 2 diabetes in a Mexican population[J].Diabetes, 2008, 57( 2): 509-513. [7] Salinas CA, Cruz-Bautista I, Mehta R, et al.The ATPbinding cassette transporter subfamily A member 1 ( ABCA1) and type 2 diabetes:an association beyond HDL cholesterol[J].Curr Diabetes Rev, 2007, 3( 4):264-267. [8] Kyriakou T, Hodgkinson C, Pontefract DE, et al.Genotypic effect of the -565C >T polymorphism in the ABCA1 gene promoter on ABCA1 expression and severity of atherosclerosis[J].Arterioscler Thromb Vasc Biol, 2005, 25( 2):418-423. [9] Kyriakou T, Pontefract DE, Viturro E, et al.Functional polymorphism in ABCA1 influences age of symptom onset in coronary artery disease patients[J].Hum Mol Genet, 2007, 16( 12):1412-1422. [10] Oram JF, Vaughan AM.ATP-Binding cassette cholesterol transporters and cardiovascular disease[J].Circ Res, 2006, 99( 10):1031-1043. [11] Uehara Y, Engel T, Li Z, et al.Polyunsaturated fatty acids and acetoacetate downregulate the expression of the ATP-binding cassette transporter A1[J].Diabetes, 2002, 51( 10):2922-2928. [12] Forcheron F, Cachefo A, Thevenon S, et al.Mechanisms of the triglyceride-and cholesterol-lowering effect of fenofi- brate in hyperlipidemic type 2 diabetic patients[J].Diabetes, 2002, 51( 12):3486-3491. [13] Albrecht C, Simon-Vermot I, Elliott JI, et al.Leukocyte ABCA1 gene expression is associated with fasting glucose concentration in normoglycemic men[J].Metabolism, 2004, 53( 1):17-21. [14] Repa JJ, Li H, Frank-Cannon TC, et al.Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse[J].J Neurosci, 2007, 27( 52):14470-14480. [15] Delvecchio CJ, Capone JP.Protein kinase C alpha modulates liver X receptor alpha transactivation[J].J Endocrinol, 2008, 197( 1):121-130. [16] Annilo T, Shulenin S, Chen ZQ, et al.Identification and characterization of a novel ABCA subfamily member, ABCA12, located in the lamellar ichthyosis region on 2q34[J].Cytogenet Genome Res, 2002, 98( 2 3):169-176. [17] Liu H, Xu X, Yang Z, et al.Impaired function and expression of P-glycoprotein in blood-brain barrier of streptozotocin- induced diabetic rats[J].Brain Res, 2006, 1123( 1):245-252. [18] Liu H, Zhang D, Xu X, et al.Attenuated function and expression of P-glycoprotein at blood-brain barrier and increased brain distribution of phenobarbital in streptozotocininduced diabetic mice[J].Eur J Pharmacol, 2007, 561( 1 2 3):226-232. [19] Liu H, Liu X, Jia L, et al.Insulin therapy restores impaired function and expression of P-gly coprotein in bloodbrain barrier of experimental diabetes[J].Biochem Pharmacol, 2008, 75( 8):1649-1658. [20] Liu H, Yang H, Wang D, et al.Insulin regulates P-glycoprotein in rat brain microvessel endothelial cells via an insulin receptor-mediated PKC NF-kappaB pathway but not a PI3K Akt pathway[J].Eur J Pharmacol, 2009, 602( 2 3):277-282. [21] Van Waarde WM, Verkade HJ, Wolters H, et al.Differential effects of streptozotocin-induced diabetes on expression of hepaticABC-transporters in rats[J].Gastroenterology, 2002, 122( 7):1842-1852. [22] Kamey ama N, Arisawa S, Ueyama J, et al.Increase in Pglycoprotein accompanied by activation of protein kinase Calpha and NF-kappaB p65 in the livers of rats with streptozotocin- induced diabetes[J].Biochim Biophys Acta, 2008, 1782( 5):355-360. [23] Nowicki MT, Aleksunes LM, Sawant SP, et al.Renal and hepatic transporter expression in type 2 diabetic rats[J]. Drug Metab Lett, 2008, 2( 1):11-17. [24] Hawkins BT, Ocheltree SM, Norwood KM, et al.Decreased blood-brain barrier permeability to fluorescein in streptozotocin-treated rats[J].Neurosci Lett, 2007, 411( 1):1-5. [25] Bryan J, Muñoz A, Zhang X, et al.ABCC8 and ABCC9: ABC transporters that regulate K+ channels[J].Pflugers Arch, 2007, 453( 5):703-718. [26] ZhouM, He HJ, Tanaka O, et al.Localization of the sulphonylurea receptor subunits, SUR2A and SUR2B, in rat renal tubular epithelium[J].Tohoku J Exp Med, 2008, 214( 3):247-256. [27] Burke MA, Mutharasan RK, Ardehali H.The sulfonylurea receptor, an atypical ATP-binding cassette protein, and its regulation of the KATP channel[J].Circ Res, 2008, 102( 2):164-176. [28] Masia R, Enkvetchakul D, Nichols CG.Differential nucleotide regulation of KATP channels by SUR1 and SUR2A[J].J Mol Cell Cardiol, 2005, 39( 3):491-501. [29] Aguilar-Bryan L, Bryan J.Molecular biology of adenosine triphosphate-sensitive potassium channels[J].Endocr Rev, 1999, 20( 2):101-135. [30] Aittoniemi J, Fotinou C, Craig TJ, et al.Review.SUR1: a unique ATP-binding cassette protein that functions as an ion channel regulator[J].Philos Trans R Soc Lond B Biol Sci, 2009, 364( 1514):257-267. [31] Kennedy MA, Barrera GC, Nakamura K, et al.ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation[J].CellMetab, 2005, 1( 2):121-131. [32] Out R, HoekstraM, Meurs I, et al.Total body ABCG1 expression protects against early atherosclerotic lesion development in mice[J].Arterioscler Thromb Vasc Biol, 2007, 27( 3):594-599. [33] Wang N, Lan D, Chen W, et al.ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins[J].Proc Natl Acad Sci USA, 2004, 101( 26):9774-9779. [34] Wang N, Yvan-Charvet L, Lǜtjohann D, et al.ATP-binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain[J].FASEB J, 2008, 22( 4):1073-1082. [35] O'Connell BJ, Denis M, Genest J.Cellular physiology of cholesterol efflux in vascular endothelial cells[J].Circulation, 2004, 110( 18):2881-2888. [36] Hassan HH, Denis M, Krimbou L, et al.Cellular cholesterol homeostasis in vascular endothelial cells[J].Can J Cardiol, 2006, Suppl B:35B-40B. [37] Naik SU, Wang X, Da Silva JS, et al.Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo[J].Circulation, 2006, 113( 1):90-97. [38] Mauldin JP, Nagelin MH, Wojcik AJ, et al.Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus[J].Circulation, 2008, 117( 21): 2785-2792. [39] Li C, Xu M, Gu Q.ATP binding cassette transporter G1 gene expression is reduced in type 2 diabetic patients[J]. Endocr J, 2009, 56( 2):313-324. [40] Zhou H, Tan KC, Shiu SW, et al.Determinants of leukocyte adenosine triphosphate-binding cassette transporter G1 gene expression in type 2 diabetes mellitus[J].Metabolism, 2008, 57( 8):1135-1140. [41] Cusatis G, Sparreboom A.Pharmacogenomic importance of ABCG2[J].Pharmacogenomics, 2008, 9( 8):1005-1009. [42] Liu YC, Liu HY, Yang HW, et al.Impaired expression and function of breast cancer resistance protein ( Bcrp) in brain cortex of streptozocin-induced diabetic rats[J].Biochem Pharmacol, 2007, 74( 12):1766-1772. [43] Mato E, Lucas M, Petriz J, et al.Identification of a pancreatic stellate cell population with properties of progenitor cells:new role for stellate cells in the pancreas[J].Biochem J, 2009, 421( 2):181-191. [44] Lu K, Lee MH, Hazard S, et al.Two genes that map to the STSL locus cause sitosterolemia:genomic structure and spectrum of mutations involving sterolin-1 and sterolin-2, encoded by ABCG5 and ABCG8, respectively[J].Am J Hum Genet, 2001, 69( 2):278-290. [45] Klett EL, Lu K, Kosters A, et al.A mouse model of sitosterolemia: absence of Abcg8 sterolin-2 results in failure to secrete biliary cholesterol[J].BMCMed, 2004, 2( 1):5. [46] Lee MH, Lu K, Hazard S, et al.Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption[J].Nat Genet, 2001, 27( 1):79-83. [47] Gylling H, Tuominen JA, Koivisto VA, et al.Cholesterol metabolism in type 1 diabetes[J].Diabetes, 2004, 53( 9):2217-2222. [48] Lally S, Tan CY, Owens D, et al.Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes:the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein[J].Diabetologia, 2006, 49( 5):1008-1016. [49] Lally S, Owens D, Tomkin GH.Genes that affect cholesterol synthesis, cholesterol absorption, and chylomicron assembly:the relationship between the liver and intestine in control and streptozotosin diabetic rats[J].Metabolism, 2007, 56( 3):430-438. |
[1] | MA Yan, TIAN Gaopeng, SHI Xingwen, SUN Ting, XIE Jingjing, ZHEN Donghu. Correlation between 25(OH)D and metabolically related fatty liver in T2DM population [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(9): 1018-1026. |
[2] | MA Xiankang, YANG Lixia, CUI Yangyang, MI Denghai. Angelica polysaccharides improve hepatic endoplasmic reticulum stress by inhibiting the expression of GRP78, p-PERK and p-Eif2α in diabetic KK-Ay mice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 926-936. |
[3] | LI Kun, LI Lulu, LI Nannan, HU Weihong, ZHOU Jianchao. Effects of glycaemic control and CYP3A5 polymorphisms on tacrolimus trough concentrations after adult kidney transplantation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 767-774. |
[4] | HOU Ruiying, GUO Lige, JIAO Weijie, DU Lei, WU Guiyue, ZHAO Xu. Effects of Xiaokeshu recipe on levels of serum inflammatory factors in type2 diabetic rats and its mechanism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(4): 377-382. |
[5] | ZHANG Xuejiao, LIU Jieting, LI Luxin, CHEN Peijian, DING Minglu, SUN Mengwei, CHU Yanhui, ZHANG Zhen . Effects and mechanism of dapagliflozin on myocardial injury in type 1 diabetes mice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(3): 257-265. |
[6] | ZHAO Shifeng, SONG Xiangming, YAO Jianping. Tirzepatide: A new glucagon-like peptide-1 receptor/glucose-dependent insulinotropic peptide receptor dual agonist [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 220-227. |
[7] | DU Xiaoyu, LI Yumeng, WU Huizhen, QIU Bo. Pharmacological and clinical evaluation of Dorzagliatin in the treatment of type 2 diabetes [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1177-1183. |
[8] | CAI Jing, PAN Binjing, LIU Jingfang. Research progress on the relationship between hypoglycemic drugs and sarcopenia [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(1): 101-108. |
[9] | ZHAI Weiwei, YU Qiaoling, LIU Ping, QIU Bo, WU Huizhen. Research progress of finerenone in the treatment of type 2 diabetes mellitus complicated with chronic kidney disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1067-1074. |
[10] | LU Senlin, LIU Xinyuan, WANG Jili, HUANG Xiaofei. Research progress of virus-mediated gene therapy in type 2 diabetes mellitu [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 800-807. |
[11] | ZENG Xiaofan, XU Yiqi, LIU Shu, WU Qian, LI Zibao, HE Junjun, JIN Yuelong, ZHAO Yongli, HE Chunling, GAO Jialin. Retrospectively analysis of the effect of low-dose aspirin on primary prevention of non-fatal myocardial infarction and cerebral infarction in patients with type 2 diabetes mellitus [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 665-671. |
[12] | LI Hao, LI Ling, XIA Zhiping, YE Qifa, PENG Guizhu. FXR agonist GW4064 ameliorates tacrolimus-induced abnormalities in glucose metabolism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(4): 466-472. |
[13] | SHAO Xi, YU Yanan, HUANG Yuhan, WANG Xiaotong, LING Hongwei, LV Dongmei, WANG Tao. Predictive factors associated with weight response to exenatide in patients with type 2 diabetes mellitus [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(3): 287-294. |
[14] | LV Xiaohan, LIN Rong. Association of Lin28 with tumor, cardiovascular disease and diabetes [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(2): 205-211. |
[15] | DAI Hongyu, YANG Kun, HU Ruchun, ZHOU Hongmei, MA Peimin, HAO Qian. Duration time and effectiveness of 0.25%ropivacaine for sciatic nerve block in patients with diabetes [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(11): 1278-1284. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||