[1] Esser R, Berry C, Du Z, et al. Preclinical pharmacology of lumiracoxib: a novel selective inhibitor of cyclooxygenase-2[J]. Brit J Pharmacol, 2005, 144(4): 538-550. [2] Sheldon EA, Beaulieu A, Paster Z, et al. Long-term efficacy and safety of lumiracoxib 100 mg: an open-label extension of a 13-week randomized controlled trial in patients with primary osteoarthritis of the knee[J]. Clin Exp Rheumatol,2008,26(4):611-619. [3] Molon V, Kruel CD, Maioli DT, et al. Evaluation of the analgesic effects of the lumiracoxib compared with placebo in the 24 first postoperative hours [J]. Rev Col Bras Cir,2009,36(1):3-8. [4] Hao JQ, Li Q, Xu SP, et al. Effect of lumiracoxib on proliferation and apoptosis of human non-small cell lung cancer cells in vitro [J]. Chin Med J, 2008, 121(7):602-607. [5] Hsu AL,Ching TT,Wang DS,et al.The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2[J].J Biol Chem,2000,275 (15):11397-11403. [6] Tang X, Sun YJ, Half E, et al.Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells [J]. Cancer Res,2002,62(17):4903-4908. [7] Elder DJ,Halton DE,Playle LC,et al.The MEK/ERK pathway mediates COX-2-selective NSAID-induced apoptosis and induced COX-2 protein expression in colorectal carcinoma cells[J].Int J Cancer, 2002,99(3):323-327. [8] Huang CH, Guh JH, Chen GS, et al.Anticancer activity of a cyclooxygenase inhibitor, CX9051, in human prostate cancer cells: the roles of NF-kappaB and crosstalk between the extrinsic and intrinsic apoptotic pathways[J]. Naunyn Schmiedebergs Arch Pharmacol, 2010,382(2):159-169. [9] Gao J,Niwa K,Sun W.Non-steroidal anti-inflammatory drugs inhibit cellular proliferation and UP regulate cyclooxygenase-2 protein expression in endometrial cancer ceils[J].Cancer Sci,2004,95(11):901-907. [10] 李春梅,陈兆峰,王丽娜,等.塞来昔布通过PI3K/Akt 通路调控胃癌细胞凋亡[J].中国肿瘤临床,2011,38(15):882-885. [11] Cano E, Mahadevan LC. Parallel signal processing among mammalian MAPKs [J].Trends Biochem Sci, 1995, 20(3): 117-122. [12] Irving EA, Bamford M. Role of mitogen- and stress-activated kinases in ischemic injury [J]. J Cereb Blood Flow Metab, 2002, 22(6):631-647. [13] Colucci-D'Amato L, Perrone-Capano C, di Porzio U. Chronic activation of ERK and neurodegenerative diseases [J]. Bioessays, 2003, 25(11):1085-1095. [14] Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions [J]. Microbiol Mol Biol Rev, 2004, 68(2):320-344. [15] Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation [J]. Oncogene, 2004, 23(16):2838-2849. [16] Johnson GL, Lapadat R.Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases [J]. Science, 2002, 298(5600):1911-1912. [17] Krysan K, Reckamp KL, Dalwadi H, et al. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner[J].Cancer Res,2005,65(14):6275-6281. |