欢迎访问《中国临床药理学与治疗学》杂志官方网站,今天是

中国临床药理学与治疗学 ›› 2025, Vol. 30 ›› Issue (5): 673-682.doi: 10.12092/j.issn.1009-2501.2025.05.011

• 方法学 • 上一篇    下一篇

基于改良机器学习模型的肺结核患者耐药综合预测及可视化系统搭建

汪峰1,梁露花1,翟菲1,罗晓玲2,项荣武1   

  1. 1沈阳药科大学 医疗器械学院,沈阳  110016,辽宁;2珠海市第六人民医院,珠海  519099,广东
  • 收稿日期:2024-06-24 修回日期:2024-07-30 出版日期:2025-05-26 发布日期:2025-05-13
  • 通讯作者: 项荣武,男,硕士,教授,研究方向:药学信息学。 E-mail: xrwlove@163.com
  • 作者简介:汪峰,男,硕士,研究方向:药学信息学。 E-mail: iwoofey@hotmail.com
  • 基金资助:
    辽宁省教育厅2021年度科学研究经费项目(LJKZ0942)

Construction of a comprehensive prediction and visualization system for drug resistance in pulmonary tuberculosis patients based on an improved machine learning model

WANG Feng1, LIANG Luhua1, ZHAI Fei1, LUO Xiaoling2, XIANG Rongwu1   

  1. 1School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; 2Zhuhai Sixth People's Hospital, Zhuhai 519099, Guangdong, China
  • Received:2024-06-24 Revised:2024-07-30 Online:2025-05-26 Published:2025-05-13

摘要:

目的:分析基于改进机器学习模型预测肺结核患者耐药的临床价值,并搭建可视化系统进行验证。方法:回顾性选取2019年3月至2024年3月珠海市第六人民医院住院且有药物敏感性试验结果的1 025例肺结核患者为研究对象,根据耐药结核病定义将患者分为敏感组631例(药敏试验结果不存在耐药情况),RR/MDR组271例(满足利福平耐药结核病或耐多药结核病定义,但是不存在对任意一种氟喹诺酮类药物耐药),pre-XDR组123例(在耐多药结核病的基础上,同时对任意一种氟喹诺酮类药物耐药)。基于改良机器学习模型分析临床资料,帮助构建耐药结核病预测模型,同步完成特征筛选,对筛选出的特征进行价值分析,并搭建可视化系统进行验证。结果:三组患者基线资料比较显示:年龄、体质量指数(BMI)、治疗分类、肺部基础疾病、咯血、二线药物使用史、毁损肺、伴有空洞在三组间差异皆具有统计学意义(P<0.05);基于改良机器学习模型筛选出8个变量,分别为二线药物使用史、BMI、治疗分类、毁损肺、肺部基础疾病、伴有空洞、咯血、年龄;改良机器学习模型对比传统模型预测准确率最高,AUC值为0.932 2(以RR/MDR预测为正类)和0.954 5(pre-XDR预测为正类)。结论:应用改良机器学习模型可帮助预测耐药结核病发生,辅助临床制定更有效的治疗方案。

关键词: 肺结核, 耐药, 改良机器学习模型, 预测, 可视化系统

Abstract:

AIM: To analyze the clinical value of predicting drug resistance in pulmonary tuberculosis patients based on improved machine learning models, and to build a visualization system for verification. METHODS: Retrospectively selected 1 025 pulmonary tuberculosis patients hospitalized in Zhuhai Sixth People's Hospital from March 2019 to March 2024 with drug sensitivity test results as the research object. According to the definition of drug-resistant tuberculosis, the patients were divided into 631 sensitive groups (drug sensitivity test results showed no drug resistance), 271 RR/MDR groups (meeting the definition of rifampicin resistant tuberculosis or multi drug resistant tuberculosis, but no drug resistance to any kind of fluoroquinolones), and 123 pre XDR groups (on the basis of multi drug resistant tuberculosis, and at the same time, drug resistance to any kind of fluoroquinolones). Analyze clinical data based on the improved machine learning model, help build a drug resistant tuberculosis prediction model, synchronously complete feature screening, conduct value analysis on the screened features, and build a visual system for verification. RESULTS: Three groups of patients with baseline data comparison shows: Age, Body mass index(BMI), basic treatment of classification, lung diseases, haemoptysis, second-line drug use history, damage to lung, with empty in all statistically significant difference between the three groups (P&lt; 0.05); Based on the modified machine learning model, 8 variables were screened, which were history of second-line drug use, BMI, treatment classification, destructive lung, underlying lung diseases, cavitation, hemoptysis, and age. The modified machine learning model had the highest prediction accuracy compared with the traditional model, with AUC values of 0.9322 (RR/MDR prediction was positive class) and 0.9545 (pre-XDR prediction was positive class). CONCLUSION: The application of the improved machine learning model can help predict the occurrence of drug-resistant tuberculosis and assist the clinical formulation of more effective treatment plans.

Key words: pulmonary tuberculosis, drug resistance, improve machine learning models, prediction, visualization system

中图分类号: