Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2026, Vol. 31 ›› Issue (1): 116-124.doi: 10.12092/j.issn.1009-2501.2026.01.013
Jianqiang DU1,2(
), Qi ZHANG3,*(
), Enpeng GU2, Chen XU1,2, Yuan GUO1,2, Menglong ZHANG1,2, Jinke GUO1,2, Si WU4, Haibo XIE4
Received:2025-05-08
Revised:2025-07-14
Online:2026-01-26
Published:2026-02-13
Contact:
Qi ZHANG
E-mail:995922837@qq.com;zyyfyyx@163.com
CLC Number:
Jianqiang DU, Qi ZHANG, Enpeng GU, Chen XU, Yuan GUO, Menglong ZHANG, Jinke GUO, Si WU, Haibo XIE. Advances in the modulation of Nrf2 signaling by natural compounds for the treatment of intervertebral disc degeneration[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2026, 31(1): 116-124.
| 天然化合物 | 实验对象 | 作用机制 | 实验效果 | 文献 | |
| 黄酮类 化合物 | 银杏总黄酮 | 人髓核细胞 | 激活Nrf2/ARE通路 | 抗炎,抗氧化,抑制细胞凋亡 | [ |
| 桃叶珊瑚苷 | SD大鼠 | 激活Nrf2通路,抑制NF-κB通路 | 抗炎,抗氧化,抑制细胞凋亡及ECM 降解 | [ | |
| 橙皮素 | C57BL/6小鼠 | 激活Nrf2通路,抑制NF-κB通路 | 抑制氧化应激 | [ | |
| 淫羊藿苷 | C57BL/6小鼠 | 激活Nrf-2/HO-1通路 | 激活线粒体自噬 | [ | |
| 木犀草素 | SD大鼠 | 激活Nrf2/HO-1通路,抑制NF-κB 通路 | 抑制炎症、细胞凋亡和ECM降解 | [ | |
| 汉黄芩素 | 大鼠髓核细胞 | 激活Nrf2/HO-1-SOD2-NQO1-GCLC 通路 | 抗氧化、抗炎 | [ | |
| 金丝桃苷 | 人髓核细胞 | 激活Nrf2/ARE通路,抑制SIRT1/NF-κB 通路 | 抑制氧化应激及细胞凋亡、减轻炎症反应,重塑ECM | [ | |
| 萜类化合物 | 熊果酸 | 大鼠髓核细胞 | 激活Nrf2/HO-1通路 | 抑制氧化应激及细胞凋亡、减轻炎症反应,重塑ECM | [ |
| 虾青素 | 大鼠髓核细胞 | 激活Nrf2/HO-1通路 | 抑制氧化应激及细胞凋亡,重塑ECM | [ | |
| 穿心莲内酯 | 大鼠髓核细胞 | 激活MAPK/Nrf2/HO-1通路 | 抑制氧化应激及细胞凋亡 | [ | |
| 番茄红素 | 人髓核细胞 | 激活Nrf2通路 | 抑制氧化应激及细胞凋亡 | [ | |
| 酚类化合物 | 没食子酸 | 大鼠髓核细胞 | 激活Nrf2通路 | 减少ECM降解,抑制氧化应激 | [ |
| 鼠尾草酚 | 大鼠髓核细胞 | 激活Nrf2/HO-1通路 | 抗炎、抗氧化 | [ | |
| 姜黄素 | SD大鼠 | 激活Nrf2/HO-1通路 | 抑制氧化应激及铁死亡 | [ | |
| 茶多酚 | SD大鼠 | 激活Nrf2/Keap1/ARE通路 | 抑制氧化应激、ECM降解 | [ | |
| 红景天苷 | 人髓核细胞 | 激活Nrf2/ARE通路 | 抑制氧化应激、ECM降解,减轻炎性 反应 | [ | |
| 生物碱类 化合物 | 吴茱萸碱 | SD大鼠 | 激活Nrf2通路 | 减轻线粒体功能障碍,抑制ECM降解、炎症反应 | [ |
| 青藤碱 | SD大鼠 | 激活Nrf2/HO-1通路 | 促进细胞增殖活性,抑制氧化应激、 细胞凋亡 | [ | |
| 紫檀芪 | SD大鼠 | 激活Nrf2通路 | 减轻炎症反应 | [ | |
Table 1 Natural compounds targeting the nrf2 pathway to regulate oxidative stress for intervertebral disc degeneration (IDD) intervention
| 天然化合物 | 实验对象 | 作用机制 | 实验效果 | 文献 | |
| 黄酮类 化合物 | 银杏总黄酮 | 人髓核细胞 | 激活Nrf2/ARE通路 | 抗炎,抗氧化,抑制细胞凋亡 | [ |
| 桃叶珊瑚苷 | SD大鼠 | 激活Nrf2通路,抑制NF-κB通路 | 抗炎,抗氧化,抑制细胞凋亡及ECM 降解 | [ | |
| 橙皮素 | C57BL/6小鼠 | 激活Nrf2通路,抑制NF-κB通路 | 抑制氧化应激 | [ | |
| 淫羊藿苷 | C57BL/6小鼠 | 激活Nrf-2/HO-1通路 | 激活线粒体自噬 | [ | |
| 木犀草素 | SD大鼠 | 激活Nrf2/HO-1通路,抑制NF-κB 通路 | 抑制炎症、细胞凋亡和ECM降解 | [ | |
| 汉黄芩素 | 大鼠髓核细胞 | 激活Nrf2/HO-1-SOD2-NQO1-GCLC 通路 | 抗氧化、抗炎 | [ | |
| 金丝桃苷 | 人髓核细胞 | 激活Nrf2/ARE通路,抑制SIRT1/NF-κB 通路 | 抑制氧化应激及细胞凋亡、减轻炎症反应,重塑ECM | [ | |
| 萜类化合物 | 熊果酸 | 大鼠髓核细胞 | 激活Nrf2/HO-1通路 | 抑制氧化应激及细胞凋亡、减轻炎症反应,重塑ECM | [ |
| 虾青素 | 大鼠髓核细胞 | 激活Nrf2/HO-1通路 | 抑制氧化应激及细胞凋亡,重塑ECM | [ | |
| 穿心莲内酯 | 大鼠髓核细胞 | 激活MAPK/Nrf2/HO-1通路 | 抑制氧化应激及细胞凋亡 | [ | |
| 番茄红素 | 人髓核细胞 | 激活Nrf2通路 | 抑制氧化应激及细胞凋亡 | [ | |
| 酚类化合物 | 没食子酸 | 大鼠髓核细胞 | 激活Nrf2通路 | 减少ECM降解,抑制氧化应激 | [ |
| 鼠尾草酚 | 大鼠髓核细胞 | 激活Nrf2/HO-1通路 | 抗炎、抗氧化 | [ | |
| 姜黄素 | SD大鼠 | 激活Nrf2/HO-1通路 | 抑制氧化应激及铁死亡 | [ | |
| 茶多酚 | SD大鼠 | 激活Nrf2/Keap1/ARE通路 | 抑制氧化应激、ECM降解 | [ | |
| 红景天苷 | 人髓核细胞 | 激活Nrf2/ARE通路 | 抑制氧化应激、ECM降解,减轻炎性 反应 | [ | |
| 生物碱类 化合物 | 吴茱萸碱 | SD大鼠 | 激活Nrf2通路 | 减轻线粒体功能障碍,抑制ECM降解、炎症反应 | [ |
| 青藤碱 | SD大鼠 | 激活Nrf2/HO-1通路 | 促进细胞增殖活性,抑制氧化应激、 细胞凋亡 | [ | |
| 紫檀芪 | SD大鼠 | 激活Nrf2通路 | 减轻炎症反应 | [ | |
| 1 |
GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990-2020, its attributable risk factors, and projections to 2050: a systematic analysis of the global burden of disease study 2021[J]. Lancet Rheumatol, 2023, 5 (6): e316- e329.
doi: 10.1016/S2665-9913(23)00098-X |
| 2 |
Knezevic NN, Candido KD, Vlaeyen J, et al. Low back pain[J]. Lancet, 2021, 398 (10294): 78- 92.
doi: 10.1016/S0140-6736(21)00733-9 |
| 3 |
Zheng K, Wang S, Deng M, et al. Mechanisms and therapeutic strategies of macrophage polarization in intervertebral disc degeneration[J]. JOR Spine, 2025, 8 (2): e70065.
doi: 10.1002/jsp2.70065 |
| 4 |
Park KM, Immerman I, Rahgozar P. Trends in the management of pediatric trigger thumb in the United States[J]. Hand (NY), 2023, 18 (4): 568- 574.
doi: 10.1177/15589447211049517 |
| 5 |
Taylor W, Erwin WM. Intervertebral disc degeneration and regeneration: new molecular mechanisms and therapeutics: obstacles and potential breakthrough technologies[J]. Cells, 2024, 13 (24): 2103.
doi: 10.3390/cells13242103 |
| 6 |
Zhang X, Zhang Z, Zou X, et al. Unraveling the mechanisms of intervertebral disc degeneration: an exploration of the p38 MAPK signaling pathway[J]. Front Cell Dev Biol, 2023, 11, 1324561.
doi: 10.3389/fcell.2023.1324561 |
| 7 |
Pan C, Hou W, Deng X, et al. The pivotal role of Nrf2 signal axis in intervertebral disc degeneration[J]. J Inflamm Res, 2023, 16, 5819- 5833.
doi: 10.2147/JIR.S432575 |
| 8 |
Huang JY, Yu HN. The role of the Nrf2 pathway in inhibiting ferroptosis in kidney disease and its future prospects[J]. Pathol Res Pract, 2025, 272, 156084.
doi: 10.1016/j.prp.2025.156084 |
| 9 |
Wang S, He S, Hu X, et al. Nrf2 mediated signaling axis in sepsis-induced cardiomyopathy: potential pharmacological receptor[J]. Inflamm Res, 2025, 74 (1): 76.
doi: 10.1007/s00011-025-02037-0 |
| 10 |
Khan MZ, Chen W, Liu X, et al. An overview of bioactive compounds' role in modulating the Nrf2/Keap1/NF-kappaB pathway to alleviate lipopolysaccharide-induced endometritis[J]. Int J Mol Sci, 2024, 25 (19): 10319.
doi: 10.3390/ijms251910319 |
| 11 |
Hasan SK, Jayakumar S, Espina Barroso E, et al. Molecular targets of oxidative stress: focus on nuclear factor erythroid 2-related factor 2 function in leukemia and other cancers[J]. Cells, 2025, 14 (10): 713.
doi: 10.3390/cells14100713 |
| 12 |
Gallorini M, Carradori S, Resende D, et al. Natural and synthetic xanthone derivatives counteract oxidative stress via Nrf2 modulation in inflamed human macrophages[J]. Int J Mol Sci, 2022, 23 (21): 13319.
doi: 10.3390/ijms232113319 |
| 13 |
He C, Zhao X, Lei Y, et al. The role of Nrf2/HO-1 signal pathway in regulating aluminum-induced apoptosis of PC12 cells[J]. J Trace Elem Med Biol, 2023, 79, 127232.
doi: 10.1016/j.jtemb.2023.127232 |
| 14 |
Liu Q, Gao Y, Ci X. Role of Nrf2 and its activators in respiratory diseasesv[J]. Oxid Med Cell Longev, 2019, 2019, 7090534.
doi: 10.1155/2019/7090534 |
| 15 |
Xian D, Guo M, Xu J, et al. Current evidence to support the therapeutic potential of flavonoids in oxidative stress-related dermatoses[J]. Redox Rep, 2021, 26 (1): 134- 146.
doi: 10.1080/13510002.2021.1962094 |
| 16 |
Kollareth DJM, Leroy V, Tu Z, et al. Lipoxin A4/FPR2 signaling mitigates ferroptosis of alveolar epithelial cells via NRF2-dependent pathway during lung ischemia-reperfusion injury[J]. FASEB J, 2025, 39 (8): e70545.
doi: 10.1096/fj.202401475R |
| 17 |
Bai L, Liu Y, Zhang X, et al. Osteoporosis remission via an anti-inflammaging effect by icariin activated autophagy[J]. Biomaterials, 2023, 297, 122125.
doi: 10.1016/j.biomaterials.2023.122125 |
| 18 |
Alpantaki K, Kampouroglou A, Koutserimpas C, et al. Diabetes mellitus as a risk factor for intervertebral disc degeneration: a critical review[J]. Eur Spine J, 2019, 28 (9): 2129- 2144.
doi: 10.1007/s00586-019-06029-7 |
| 19 |
Han Y, Li X, Yan M, et al. Oxidative damage induces apoptosis and promotes calcification in disc cartilage endplate cell through ROS/MAPK/NF-kappaB pathway: implications for disc degeneration[J]. Biochem Biophys Res Commun, 2019, 516 (3): 1026- 1032.
doi: 10.1016/j.bbrc.2017.03.111 |
| 20 |
Vergari C, Chan D, Clarke A, et al. Bovine and degenerated human annulus fibrosus: a microstructural and micromechanical comparison[J]. Biomech Model Mechanobiol, 2017, 16 (4): 1475- 1484.
doi: 10.1007/s10237-017-0900-z |
| 21 | 罗林钊, 刘晏东, 张彦军, 等. 炎症细胞因子及其相关通路在椎间盘退变中的作用机制[J]. 中国细胞生物学学报, 2024, 46 (10): 1842- 1848. |
| 22 |
Arabpour M, Zareanshahraki M, Albadr RJ, et al. The role of Nrf2 in the regulation of periodontitis, peri-implantitis, dentin infection, and apical periodontitis[J]. Biol Proced Online, 2025, 27 (1): 23.
doi: 10.1186/s12575-025-00285-2 |
| 23 |
Kim MJ, Jeon JH. Recent advances in understanding Nrf2 agonism and its potential clinical application to metabolic and inflammatory diseases[J]. Int J Mol Sci, 2022, 23 (5): 2846.
doi: 10.3390/ijms23052846 |
| 24 |
Bhardwaj S, Grewal AK, Singh S, et al. An insight into the concept of neuroinflammation and neurodegeneration in Alzheimer's disease: targeting molecular approach Nrf2, NF-κB, and CREB[J]. Inflammopharmacology, 2024, 32 (5): 2943- 2960.
doi: 10.1007/s10787-024-01502-2 |
| 25 |
Tang H, Gao L, Mao J, et al. Salidroside protects against bleomycin-induced pulmonary fibrosis: activation of Nrf2-antioxidant signaling, and inhibition of NF-kappaB and TGF-beta1/Smad-2/-3 pathways[J]. Cell Stress Chaperones, 2016, 21 (2): 239- 249.
doi: 10.1007/s12192-015-0654-4 |
| 26 |
Xie C, Ma H, Shi Y, et al. Cardamonin protects nucleus pulposus cells against IL-1beta-induced inflammation and catabolism via Nrf2/NF-kappaB axis[J]. Food Funct, 2021, 12 (6): 2703- 2714.
doi: 10.1039/D0FO03353G |
| 27 |
Fang W, Zhou X, Wang J, et al. Wogonin mitigates intervertebral disc degeneration through the Nrf2/ARE and MAPK signaling pathways[J]. Int Immunopharmacol, 2018, 65, 539- 549.
doi: 10.1016/j.intimp.2018.10.024 |
| 28 |
Zuo R, Wang Y, Li J, et al. Rapamycin induced autophagy inhibits inflammation-mediated endplate degeneration by enhancing nrf2/Keap1 signaling of cartilage endplate stem cells[J]. Stem Cells, 2019, 37 (6): 828- 840.
doi: 10.1002/stem.2999 |
| 29 |
Kang L, Liu S, Li J, et al. Parkin and Nrf2 prevent oxidative stress-induced apoptosis in intervertebral endplate chondrocytes via inducing mitophagy and anti-oxidant defenses[J]. Life Sci, 2020, 243, 117244.
doi: 10.1016/j.lfs.2019.117244 |
| 30 |
Hu S, Zhang C, Qian T, et al. Promoting Nrf2/Sirt3-dependent mitophagy suppresses apoptosis in nucleus pulposus cells and protects against intervertebral disc degeneration[J]. Oxid Med Cell Longev, 2021, 2021, 6694964.
doi: 10.1155/2021/6694964 |
| 31 |
Hong J, Yan J, Chen J, et al. Identification of key potential targets for TNF-alpha/TNFR1-related intervertebral disc degeneration by bioinformatics analysis[J]. Connect Tissue Res, 2021, 62 (5): 531- 541.
doi: 10.1080/03008207.2020.1797709 |
| 32 |
Krupkova O, Sadowska A, Kameda T, et al. p38 MAPK facilitates crosstalk between endoplasmic reticulum stress and IL-6 release in the intervertebral disc[J]. Front Immunol, 2018, 9, 1706.
doi: 10.3389/fimmu.2018.01706 |
| 33 |
Yang ZB, Chen WW, Chen HP, et al. MiR-155 aggravated septic liver injury by oxidative stress-mediated ER stress and mitochondrial dysfunction via targeting Nrf-2[J]. Exp Mol Pathol, 2018, 105 (3): 387- 394.
doi: 10.1016/j.yexmp.2018.09.003 |
| 34 |
Wang R, Luo D, Li Z, et al. Dimethyl fumarate ameliorates nucleus pulposus cell dysfunction through activating the Nrf2/HO-1 pathway in intervertebral disc degeneration[J]. Comput Math Methods Med, 2021, 2021, 6021763.
doi: 10.1155/2021/6021763 |
| 35 |
Liu Z, Lu H, Zhang X, et al. NOXA exacerbates endoplasmic-reticulum-stress-induced intervertebral disc degeneration by activating apoptosis and ECM degradation[J]. Cell Death Discov, 2025, 11 (1): 257.
doi: 10.1038/s41420-025-02539-0 |
| 36 |
Liu T, Li Z, Zhang W, et al. 17β-estradiol maintains extracellular matrix homeostasis of nucleus pulposus cells by activating p70 S6K1 signaling pathway[J]. Front Cell Dev Biol, 2025, 13, 1564458.
doi: 10.3389/fcell.2025.1564458 |
| 37 |
Hu B, Shi C, Xu C, et al. Heme oxygenase-1 attenuates IL-1beta induced alteration of anabolic and catabolic activities in intervertebral disc degeneration[J]. Sci Rep, 2016, 6, 21190.
doi: 10.1038/srep21190 |
| 38 | 李静, 黄娅芬, 夏晓枫, 等. 银杏总黄酮对IL-1β诱导的髓核细胞凋亡及Nrf2/ARE信号通路的影响[J]. 河北医学, 2021, 27 (10): 1585- 1591. |
| 39 |
王帅, 贾欢欢, 韦林, 等. 桃叶珊瑚苷通过调控Nrf2/NF-κB信号通路改善穿刺诱导的大鼠椎间盘退变[J]. 广州中医药大学学报, 2024, 41 (12): 3273- 3282.
doi: 10.13359/j.cnki.gzxbtcm.2024.12.028 |
| 40 |
Zhu J, Sun R, Yan C, et al. Hesperidin mitigates oxidative stress-induced ferroptosis in nucleus pulposus cells via Nrf2/NF-kappaB axis to protect intervertebral disc from degeneration[J]. Cell Cycle, 2023, 22 (10): 1196- 1214.
doi: 10.1080/15384101.2023.2200291 |
| 41 |
Shao Y, Sun L, Yang G, et al. Icariin protects vertebral endplate chondrocytes against apoptosis and degeneration via activating Nrf-2/HO-1 pathway[J]. Front Pharmacol, 2022, 13, 937502.
doi: 10.3389/fphar.2022.937502 |
| 42 |
Lin J, Chen J, Zhang Z, et al. Luteoloside inhibits IL-1beta-induced apoptosis and catabolism in nucleus pulposus cells and ameliorates intervertebral disk degeneration[J]. Front Pharmacol, 2019, 10, 868.
doi: 10.3389/fphar.2019.00868 |
| 43 |
Xie T, Yuan J, Mei L, et al. Hyperoside ameliorates TNF-alpha-induced inflammation, ECM degradation and ER stress-mediated apoptosis via the SIRT1/NF-kappaB and Nrf2/ARE signaling pathways in vitro[J]. Mol Med Rep, 2022, 6 (2): 260.
doi: 10.3892/mmr.2022.12776 |
| 44 | 胡永峥. 熊果酸在椎间盘髓核退变中的作用及其机制研究 [D]. 太原: 山西医科大学, 2024. |
| 45 | 宋靖辉. 虾青素缓解TBHP诱导的椎间盘髓核细胞凋亡机制研究 [D]. 武汉: 华中科技大学, 2023. |
| 46 |
Zhang C, Lu Z, Lyu C, et al. Andrographolide inhibits static mechanical pressure-induced intervertebral disc degeneration via the MAPK/Nrf2/HO-1 pathway[J]. Drug Des Devel Ther, 2023, 17, 535- 550.
doi: 10.2147/DDDT.S392535 |
| 47 |
Lu Y, Zhou L, He S, et al. Lycopene alleviates disc degeneration under oxidative stress through the Nrf2 signaling pathway[J]. Mol Cell Probes, 2020, 51, 101559.
doi: 10.1016/j.mcp.2020.101559 |
| 48 |
Zhu Z, Huang Z, Zhang C, et al. Gallic acid protects intervertebral disc cells from ferroptosis and alleviates intervertebral disc degeneration by regulating key factors of oxidative stress[J]. Front Pharmacol, 2025, 16, 1501725.
doi: 10.3389/fphar.2025.1501725 |
| 49 | 杨明. 鼠尾草酚对椎间盘退变的保护作用及机制研究 [D]. 苏州: 苏州大学, 2023. |
| 50 | 何彦兴. 姜黄素通过抑制髓核细胞铁死亡延缓腰椎间盘退变的机制研究 [D]. 大连: 大连医科大学, 2023. |
| 51 | 宋达玮. 茶多酚通过Nrf2/Keap1/ARE途径缓解椎间盘退变的作用及相关应用研究 [D]. 苏州: 苏州大学, 2021. |
| 52 | 李敬超. 红景天苷通过Nrf2/ARE信号通路缓解椎间盘退变的研究 [D]. 天津: 天津医科大学, 2020. |
| 53 |
Xie T, Gu X, Pan R, et al. Evodiamine ameliorates intervertebral disc degeneration through the Nrf2 and MAPK pathways[J]. Cytotechnology, 2024, 76 (2): 153- 166.
doi: 10.1007/s10616-023-00605-y |
| 54 |
王倩, 卢子昂, 李利和, 等. 青藤碱可有效抑制白细胞介素1β介导的髓核细胞凋亡[J]. 中国组织工程研究, 2024, 28 (2): 224- 230.
doi: 10.12307/2023.873 |
| 55 | 吴畏, 章海均, 顾志谦, 等. 紫檀芪通过促进Nrf2核转移在调节髓核细胞炎症反应中的作用[J]. 中国细胞生物学学报, 2016, 38 (10): 1214- 1221. |
| 56 |
张棽, 饶佳涛, 王超越, 等. 银杏总黄酮对血管性痴呆大鼠神经元损伤的影响及作用机制[J]. 中国老年学杂志, 2024, 44 (6): 1466- 1469.
doi: 10.3969/j.issn.1005-9202.2024.06.046 |
| 57 |
李洁, 李元, 周美云, 等. 桃叶珊瑚苷通过PINK1/Parkin通路促进缺血性脑卒中大鼠线粒体自噬[J]. 神经解剖学杂志, 2025, 41 (3): 335- 341.
doi: 10.16557/j.cnki.1000-7547.2025.03.010 |
| 58 | Mirzaei A, Mirzaei A, Najjar KS, et al. Promising influences of hesperidin and hesperetin against diabetes and its complications: a systematic review of molecular, cellular, and metabolic effects[J]. Excli J, 2023, 22, 1235- 1263. |
| 59 | 姜亚玲, 李文渊, 冯爽, 等. 木犀草素的结构修饰及其生物活性研究进展[J]. 中草药, 2023, 54 (20): 6889- 6902. |
| 60 | 刘晓金. 黄芩化学成分和药理作用研究进展及质量标志物预测分析[J]. 中华中医药学刊, 1-21[2025-07-14]. |
| 61 |
王西彬, 左瑞庭. 金丝桃苷对IL-1β诱导的小鼠骶髂关节软骨细胞损伤的影响[J]. 中成药, 2021, 43 (2): 369- 373.
doi: 10.3969/j.issn.1001-1528.2021.02.013 |
| 62 | 朱春晖, 刘刚, 陈伟, 等. 虾青素调控tRF-ValAAC对骨关节炎软骨细胞生物学功能的影响及其机制[J]. 中华骨与关节外科杂志, 2024, 17 (10): 921- 930. |
| 63 |
武莉, 冯吉波, 王延茹, 等. 穿心莲内酯对胰岛素抵抗大鼠的影响及可能作用机制分析[J]. 中华中医药学刊, 2024, 42 (9): 246- 250.
doi: 10.13193/j.issn.1673-7717.2024.09.047 |
| 64 |
乔强. 番茄红素保健功能研究及其应用进展[J]. 现代食品, 2022, 28 (13): 20- 22.
doi: 10.16736/j.cnki.cn41-1434/ts.2022.13.004 |
| 65 |
黄欢欢, 康海澜. 基于没食子酸及其衍生物的研究进展[J]. 高分子材料科学与工程, 2024, 40 (11): 180- 190.
doi: 10.16865/j.cnki.1000-7555.2024.0219 |
| 66 |
管佳宁, 徐盈盈, 徐君卿. 鼠尾草酚对脓毒症模型大鼠肺损伤保护作用及TRPM6、TRPM7表达的影响[J]. 浙江中西医结合杂志, 2020, 30 (5): 358- 363, 438.
doi: 10.3969/j.issn.1005-4561.2020.05.007 |
| 67 |
Hatcher H, Planalp R, Cho J, et al. Curcumin: from ancient medicine to current clinical trials[J]. Cell Mol Life Sci, 2008, 65 (11): 1631- 1652.
doi: 10.1007/s00018-008-7452-4 |
| 68 | 魏景利, 贾菲. 茶多酚的生物活性及其在食品中的应用研究进展[J]. 食品安全导刊, 2025 (10): 92- 94. |
| 69 |
Zhou Y, He YJ, Wang ZJ, et al. A review of plant characteristics, phytochemistry and bioactivities of the genus Glechoma[J]. J Ethnopharmacol, 2021, 271, 113830.
doi: 10.1016/j.jep.2021.113830 |
| 70 |
梁靖蓉, 麦凤怡, 李陈广, 等. 吴茱萸碱的药理学研究进展[J]. 中国药理学通报, 2022, 38 (10): 1457- 1461.
doi: 10.12360/CPB202201066 |
| 71 |
徐易琳, 黄莉, 周莉莉, 等. 青藤碱药理作用及临床应用的研究进展[J]. 华西药学杂志, 2024, 39 (2): 209- 215.
doi: 10.13375/j.cnki.wcjps.2024.02.020 |
| 72 |
马心如, 戴艳菲, 姚军虎, 等. 紫檀芪的生物学功能及在动物生产中的应用研究进展[J]. 动物营养学报, 2025, 37 (2): 804- 811.
doi: 10.12418/CJAN2025.070 |
| [1] | SONG Cong, GAO Jinglin, BAN Feng, MENG Meng, WANG Mingxia. Research progress of PARP inhibitors in the treatment of brain glioma [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(9): 1281-1289. |
| [2] | WEI Xiaocheng, LI Xinrong, HE Jungang, LI Xu, QIANG Zhengze, WANG Yan, WANG Mingwei, LI Chengyi. Research progress on antitumor effects of Hedysari radix and active components [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(8): 1112-1121. |
| [3] |
LI Shanshan, WEI Dandan, KANG Hanyu, LIU Xiaopeng, YAN Shuxun, JIANG Shiqing.
Research progress on the clinical application and mechanism of commonly used traditional Chinese medicine in the treatment of breast cancer
[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(7): 977-983.
|
| [4] | DU Lijuan, LIN Jianhua, YE Jinghuan, SONG Lu, PENG Yanfen, LIU Yuping. Effect and mechanism of Yiqi tongfu xiere prescription on lipopolysaccharide-induced acute lung injury in mice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(5): 599-607. |
| [5] | CAO Jun, ZHOU Yanlin, AI Zhengwen, LI Shigang. Research progress on mechanism of action of Chaenomeles speciosa Nakai in the treatment of rheumatoid arthritis bone restruction [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(3): 404-411. |
| [6] | WANG Zan, WANG Ruiqi, ZHANG Yanan, CAI Lijia, SUN Qingqing. Frontier explorations: New progress in wakefulness regulation mechanisms and its implications for new drug development [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(12): 1596-1605. |
| [7] | SUN Jianing, WANG Ruiqi, YANG Weidong, ZHANG Lu, WANG Yan, CHENG Yangang, WANG Yingli, HAO Xuliang. Exploring the mechanism of Bai-lian turbidity reducing formula in treating lipid metabolism disorders based on transcriptomics [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(12): 1658-1668. |
| [8] | HUANG Shumin, XIE Baocheng, LIU Guohui. Research progress on the mechanism of GLP-1 receptor agonists in the treatment of diabetic nephropathy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(12): 1701-1710. |
| [9] | LUO Jiawei, CHEN Tianwang, WANG Xinyu, LIU Juan, HUANG Bo, LI Lisheng, XU Shangfu. Research progress on the effect and mechanism of natural products of traditional Chinese medicine in preventing vascular restenosis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2025, 30(10): 1408-1416. |
| [10] | Celimuge, Hudeligen, XU Liang. Network pharmacology-molecular docking analysis and experimental validation to explore the protective mechanism of Mongolian medicine Gaoyou on renal function [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(9): 968-978. |
| [11] | PANG Lili, HU Ying, LUO Jie, TU Qin, CHEN Min. Study of the mechanism of combretastatin a-4 derivative LGD5 induced G2/M cycle arrest and apoptosis in human cervical cancer HeLa cells [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(10): 1100-1109. |
| [12] | YAN Xiaoting, WANG Xinye, BAI Ming, YAO Guodong. Research progress on anti-glioma mechanism of natural sesquiterpene lactones [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(10): 1174-1184. |
| [13] | XU Jinhui, YUE Hongmei, LI Yating, LIU Miaomiao, WU Xingdong, ZHU Haobin. Advances in the study of mesenchymal stem cells in obstructive sleep apnea hypoventilation syndrome [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2024, 29(1): 114-120. |
| [14] | CHEN Yulin, JIANG Hugang, WANG Xinqiang, LIU Kai, LI Yingdong, AN Tao, ZHAO Xinke. Effects and mechanism of Ginseng Yixin granules (QSYXG) for heart failure with preserved ejection fraction based on the network pharmacology and molecular docking strategy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1081-1092. |
| [15] | YANG Mengjiao, YUAN Hao, ZHENG Ya, WANG Yuping, GUO Qinghong. Advances in the treatment of potassium-competitive acid blockers in reflux esophagitis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(10): 1190-1196. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||