Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2011, Vol. 16 ›› Issue (4): 447-454.
Previous Articles Next Articles
ZHANG Yan, HAO Hai-ping, WANG Guang-ji
Received:
2011-04-03
Revised:
2011-03-22
Published:
2011-06-22
CLC Number:
ZHANG Yan, HAO Hai-ping, WANG Guang-ji. Drug-drug interaction mediated by UGT[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2011, 16(4): 447-454.
[1] Tukey RH, Strassburg CP. Human UDP-glucuronosyltransferases: metabolism, expression, and disease[J]. Annu Rev Pharmacol Toxicol, 2000,40: 581-616. [2] Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes morphine glucuronidation[J]. Drug Metab Dispos, 1997,25(1): 1-4. [3] Mackenzie PI, Bock KW, Burchell B, et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily[J]. Pharmacogenet Genomics, 2005,15(10): 677-685. [4] Nakamura A, Nakajima M, Yamanaka H, et al. Expression of UGT1A and UGT2B mRNA in human normal tissues and various cell lines[J]. Drug Metab Dispos, 2008,36(8): 1461-1464. [5] Kiang TK, Ensom MH, Chang TK. UDP-glucuronosyltransferases and clinical drug-drug interactions[J]. Pharmacol Ther, 2005, 106(1): 97-132. [6] 姜杉, 郝海平, 王广基. 肝损状态下尿苷二磷酸葡萄糖醛酸转移酶研究进展[J]. 中国临床药理学与治疗学, 2009,14(12): 1321 - 1328. [7] Court MH. Interindividual variability in hepatic drug glucuronidation: studies into the role of age, sex, enzyme inducers, and genetic polymorphism using the human liver bank as a model system[J]. Drug Metab Rev, 2010, 42(1): 202-217. [8] Bosma PJ. Inherited disorders of bilirubin metabolism[J]. J Hepatol, 2003, 38(1): 107-117. [9] Magee CN, Medani SA, Leavey SF, et al. Severe rhabdomyolysis as a consequence of the interaction of fusidic acid and atorvastatin[J]. Am J Kidney Dis, 2010, 56(5): e11-15. [10] Tuteja S, Pyrsopoulos NT, Wolowich WR, et al. Simvastatin-ezetimibe-induced hepatic failure necessitating liver transplantation[J]. Pharmacotherapy, 2008,28(9): 1188-1193. [11] Fujita KI, Sugiyama M, Akiyama Y, et al. The small-molecule tyrosine kinase inhibitor nilotinib is a potent noncompetitive inhibitor of the SN-38 glucuronidation by human UGT1A1[J]. Cancer Chemother Pharmacol, 2010,67(1):237-241. [12] Zhou J, Tracy TS, Remmel RP. Correlation between bilirubin glucuronidation and estradiol-3-gluronidation in the presence of model UGT1A1 substrates/inhibitors[J]. Drug Metab Dispos, 2011,39(2):322-329. [13] Oechsler S, Skopp G. An in vitro approach to estimate putative inhibition of buprenorphine and norbuprenorphine glucuronidation[J]. Int J Legal Med, 2010, 124(3): 187-194. [14] Hanioka N, Takeda Y, Tanaka-Kagawa T, et al. Interaction of bisphenol A with human UDP-glucuronosyltransferase 1A6 enzyme[J]. Environ Toxicol, 2008, 23(3): 407-412. [15] Mano Y, Usui T, Kamimura H. In vitro inhibitory effects of non-steroidal anti-inflammatory drugs on 4-methylumbelliferone glucuronidation in recombinant human UDP-glucuronosyltransferase 1A9--potent inhibition by niflumic acid[J]. Biopharm Drug Dispos, 2006, 27(1): 1-6. [16] Belanger AS, Caron P, Harvey M, et al. Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine[J]. Drug Metab Dispos, 2009, 37(9): 1793-1796. [17] Knights KM, Bowalgaha K, Miners JO. Spironolactone and canrenone inhibit UGT2B7-catalyzed human liver and kidney microsomal aldosterone 18beta-glucuronidation: a potential drug interaction[J]. Drug Metab Dispos, 2010, 38(7): 1011-1014. [18] Liu Y, Ramirez J, House L, et al. Comparison of the drug-drug interactions potential of erlotinib and gefitinib via inhibition of UDP-glucuronosyltransferases[J]. Drug Metab Dispos, 2010, 38(1): 32-39. [19] Sten T, Finel M, Ask B, et al. Non-steroidal anti-inflammatory drugs interact with testosterone glucuronidation[J]. Steroids, 2009,74(12): 971-977. [20] Yong WP, Ramirez J, Innocenti F, et al. Effects of ketoconazole on glucuronidation by UDP-glucuronosyltransferase enzymes[J]. Clin Cancer Res, 2005, 11(18): 6699-6704. [21] Iwamoto M, Wenning LA, Mistry GC, et al. Atazanavir modestly increases plasma levels of raltegravir in healthy subjects[J]. Clin Infect Dis, 2008, 47(1): 137-140. [22] Mross K, Steinbild S, Baas F, et al. Results from an in vitro and a clinical/pharmacological phase I study with the combination irinotecan and sorafenib[J]. Eur J Cancer, 2007,43(1): 55-63. [23] Spina E, D'Arrigo C, Migliardi G, et al. Effect of adjunctive lamotrigine treatment on the plasma concentrations of clozapine, risperidone and olanzapine in patients with schizophrenia or bipolar disorder[J]. Ther Drug Monit, 2006, 28(5): 599-602. [24] Ammon S, von Richter O, Hofmann U, et al. In vitro interaction of codeine and diclofenac[J]. Drug Metab Dispos, 2000, 28(10): 1149-1152. [25] Ammon S, Marx C, Behrens C, et al. Diclofenac does not interact with codeine metabolism in vivo: a study in healthy volunteers[J]. BMC Clin Pharmacol, 2002,2: 2. [26] Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios[J]. Drug Metab Dispos, 2004, 32(11): 1201-1208. [27] Mohamed MF, Frye RF. Inhibition of intestinal and hepatic glucuronidation of mycophenolic acid by Ginkgo biloba extract and flavonoids[J]. Drug Metab Dispos, 2010, 38(2): 270-275. [28] Ismail S, Hanapi NA, Ab Halim MR, et al. Effects of Andrographis paniculata and Orthosiphon stamineus extracts on the glucuronidation of 4-methylumbelliferone in human UGT isoforms[J]. Molecules, 2010, 15(5): 3578-3592. [29] Nakagawa N, Katoh M, Yoshioka Y, et al. Inhibitory effects of Kampo medicine on human UGT2B7 activity[J]. Drug Metab Pharmacokinet, 2009, 24(6): 490-499. [30] Katoh M, Yoshioka Y, Nakagawa N, et al. Effects of Japanese herbal medicine, Kampo, on human UGT1A1 activity[J]. Drug Metab Pharmacokinet, 2009, 24(3): 226-234. [31] Uchaipichat V, Mackenzie PI, Elliot DJ, et al. Selectivity of substrate (trifluoperazine) and inhibitor (amitriptyline, androsterone, canrenoic acid, hecogenin, phenylbutazone, quinidine, quinine, and sulfinpyrazone) “probes” for human udp-glucuronosyltransferases[J]. Drug Metab Dispos, 2006, 34(3): 449-456. [32] Venkataramanan R, Ramachandran V, Komoroski BJ, et al. Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures[J]. Drug Metab Dispos, 2000,28(11): 1270-1273. [33] Sridar C, Goosen TC, Kent UM, et al. Silybin inactivates cytochromes P450 3A4 and 2C9 and inhibits major hepatic glucuronosyltransferases[J]. Drug Metab Dispos, 2004, 32(6): 587-594. [34] Van Erp NP, Baker SD, Zhao M, et al. Effect of milk thistle (Silybum marianum) on the pharmacokinetics of irinotecan[J]. Clin Cancer Res, 2005, 11(21): 7800-7806. [35] Shiratani H, Katoh M, Nakajima M, et al. Species differences in UDP-glucuronosyltransferase activities in mice and rats[J]. Drug Metab Dispos, 2008, 36(9): 1745-1752. [36] Shelby MK, Cherrington NJ, Vansell NR, et al. Tissue mRNA expression of the rat UDP-glucuronosyltransferase gene family[J]. Drug Metab Dispos, 2003, 31(3): 326-333. [37] Buckley DB, Klaassen CD. Tissue- and gender-specific mRNA expression of UDP-glucuronosyltransferases (UGTs) in mice[J]. Drug Metab Dispos, 2007, 35(1): 121-127. [38] Tong Z, Chandrasekaran A, DeMaio W, et al. Species differences in the formation of vabicaserin carbamoyl glucuronide[J]. Drug Metab Dispos, 2010, 38(4): 581-590. [39] Mazur CS, Kenneke JF, Hess-Wilson JK, et al. Differences between human and rat intestinal and hepatic bisphenol A glucuronidation and the influence of alamethicin on in vitro kinetic measurements[J]. Drug Metab Dispos, 2010, 38(12): 2232-2238. [40] Mano Y, Usui T, Kamimura H. Species differences in inhibition potential of nonsteroidal anti-inflammatory drugs against estradiol 3beta-glucuronidation between rats, dogs, and humans[J]. J Pharm Sci, 2008, 97(7): 2805-2810. [41] Zhou SF, Tingle MD, Kestell P, et al. Species differences in the metabolism of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid in vitro: implications for prediction of metabolic interactions in vivo[J]. Xenobiotica, 2002, 32(2): 87-107. |
[1] | HE Xueru, LI Ying, MA Yinling, FU Yuhao, XUN Xuejiao, DONG Zhanjun. Pharmacokinetic interaction study between sorafenib and dapagliflozin in rats [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 498-507. |
[2] | HUANG Kaige, XU Qinhua, WANG Wei. Interaction effect and predictive efficacy of blood glucose and blood calcium on the prognosis of patients with acute severe pancreatitis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(11): 1227-1234. |
[3] | HE Xueru, FU Yuhao, XUN Xuejiao, CUI Yanjun, DONG Zhanjun. Advances in uridine diphosphate glucuronosyltransferase-mediated drug interactions with tyrosine kinase inhibitors [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 936-945. |
[4] | LIU Chen, FANG Mengdie, XU Hao, LI Chao, REN Juan, ZUO Bowen, ZHANG Yanmei. Atractyloside targets the area of action of oncoprotein BORIS to inhibit cancer cell proliferation [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(9): 1005-1013. |
[5] | LIU Lu, CHEN Xiaoyan. Current status of clinical drug-drug interactions research of innovative small molecule drugs in China [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(8): 863-875. |
[6] | MENG Qiang, LIU Kexin. Research status and prospect of transporter-mediated drug-drug interactions [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(8): 876-888. |
[7] | ZHOU Han, LIU Xiaodong. Application of physiologically based pharmacokinetic model in drug development and several questions being thought [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(8): 889-913. |
[8] | SUN Bo, FU Shujun, CHEN Guiliang, LI Li. Applications of Drug Interaction Study in New Drug Development and Regulartory Decision-making [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(10): 1095-1102. |
[9] | PENG Jing, LIU Jun, XU Huifang, LI Yueran, JIANG Jia, WANG Sheng, ZHOU Dexi, ZHU Yanhong, YANG Kui, LUAN Jiajie. Correlation study between cytochrome P4502C19 gene polymorphism or metabolic type and ADP induced-platelet aggregation inhibition and clopidogrel resistance [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(7): 746-751. |
[10] | YANG Lu, WEI Bin, ZHANG Liping, BI Shanshan, LU Wei. Response surface model to optimize the concentration range of propofol and remifentanil [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(4): 413-420. |
[11] | WU Qiaoyu, YUAN Hong, LU Yao. Evaluation of the effects of resveratrol on the activity human cytochrome P450 through combined probe method [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(4): 426-432. |
[12] | YAN Pan, SHI Jianfei, LI Jing, WANG Shengdong, WANG Shuqi, WANG Chengpeng, SONG Mingfen. Effects of DRD2 and 5-HTR2A gene polymorphisms and their interaction on olanzapine in the treatment of schizophrenia [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(10): 1131-1138. |
[13] | SHA Bijun, ZHOU Sufeng, WANG Lu, ZHAO Yuqing, CHEN Xijing, SHAO Feng. Methods and progress of clinical research on drug-drug interactions [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(9): 1037-1045. |
[14] | LIU Yujia, LI Li, HU Xiaoping, ZHONG Like, LI Jingjing, HUANG Ping, ZHANG Yiwen. A correlation analysis between survival rate and the characteristic gene of gastric cancer based on bioinformatics [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(8): 852-859. |
[15] | WEN Chunjie, ZHANG Ying, WU Lanxiang, ZHOU Honghao. Inhibitory effect of vemurafenib on UGT1A1-mediated irinotecan metabolism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(7): 773-777. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||