Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2012, Vol. 17 ›› Issue (6): 709-714.
Previous Articles Next Articles
WU Wei-hua1,2, HU Chang-ping1
Received:
2012-02-03
Revised:
2012-04-28
Online:
2012-06-26
Published:
2012-06-25
CLC Number:
WU Wei-hua, HU Chang-ping. Role of microRNA-21 in cardiovascular diseases[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2012, 17(6): 709-714.
[1] He J, Gu D, Wu X, et al. Major causes of death among men and women in China[J]. N Engl J Med, 2005, 353(11):1124-1134. [2] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297. [3] Denli AM, Tops BB, Plasterk RH, et al. Processing of primary microRNAs by the Microprocessor complex[J]. Nature, 2004, 432(7014):231-235. [4] Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output[J]. Nature, 2008, 455(7209):64-71. [5] da Costa Martins PA, De Windt LJ. miR-21: a miRaculous Socratic paradox[J]. Cardiovasc Res, 2010, 87(3):397-400. [6] Kumarswamy R, Volkmann I, Thum T. Regulation and function of miRNA-21 in health and disease[J]. RNA Biol, 2011, 8(5):706-713. [7] Fujita S, Ito T, Mizutani T, et al. miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism[J]. J Mol Biol, 2008, 378(3):492-504. [8] Du J, Yang S, An D, et al. BMP-6 inhibits microRNA-21 expression in breast cancer through repressing deltaEF1 and AP-1[J]. Cell Res, 2009, 19(4):487-496. [9] Choy MK, Movassagh M, Siggens L, et al. High-throughput sequencing identifies STAT3 as the DNA-associated factor for p53-NF-kappaB-complex-dependent gene expression in human heart failure[J]. Genome Med, 2010, 2(6):37. [10] Loffler D, Brocke-Heidrich K, Pfeifer G, et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer[J].Blood, 2007, 110(4):1330-1333. [11] Velu CS, Baktula AM, Grimes HL. Gfi1 regulates miR-21 and miR-196b to control myelopoiesis[J]. Blood, 2009,113(19):4720-4728. [12] Wickramasinghe NS, Manavalan TT, Dougherty SM, et al. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells[J]. Nucleic Acids Res, 2009, 37(8):2584-2595. [13] Davis BN, Hilyard AC, Lagna G, et al. SMAD proteins control DROSHA-mediated microRNA maturation[J]. Nature, 2008, 454(7200):56-61. [14] Sahni V, Mukhopadhyay A, Tysseling V, et al. BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury[J]. J Neurosci, 2010, 30(5):1839-1855. [15] Roy S, Khanna S, Hussain SR, et al. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue[J]. Cardiovasc Res, 2009, 82(1):21-29. [16] Sayed D, He M, Hong C, et al. MicroRNA-21 is a downstream effector of AKT that mediates its antiapoptotic effects via suppression of Fas ligand[J]. J Biol Chem, 2010, 285(26):20281-20290. [17] Ji R, Cheng Y, Yue J, et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation[J]. Circ Res, 2007, 100(11):1579-1588. [18] Lin Y, Liu X, Cheng Y, et al. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells[J]. J Biol Chem, 2009, 284(12):7903-7913. [19] Cheng Y, Zhu P, Yang J, et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4[J]. Cardiovasc Res, 2010, 87(3):431-439. [20] Wang M, Li W, Chang GQ, et al. MicroRNA-21 rgulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities[J]. Arterioscler Thromb Vasc Biol, 2011, 31(9):2044-2053. [21] Thum T, Gross C, Fiedler J, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008, 456(7224):980-984. [22] Sayed D, Rane S, Lypowy J, et al. MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths[J]. Mol Biol Cell, 2008, 19(8):3272-3282. [23] Zhou J, Wang KC, Wu W, et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-{alpha} in an autoregulatory loop to modulate flow-induced endothelial inflammation[J]. Proc Natl Acad Sci U S A, 2011, 108(25):10355-10360. [24] Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity[J]. Nature, 2009, 29(3):705-710. [25] Caruso P, MacLean MR, Khanin R, et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline[J]. Arterioscler Thromb Vasc Biol, 2010, 30(4):716-723. [26] Sarkar J, Gou D, Turaka P, et al. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration[J]. Am J Physiol Lung Cell Mol Physiol, 2010, 299(6):L861-871. [27] Li T, Cao H, Zhuang J, et al. Identification of miR-130a, miR-27b and miR-210 as serum biomarkers for atherosclerosis obliterans[J]. Clin Chim Acta, 2011,412(1/2):66-70. [28] Raitoharju E, Lyytikainen LP, Levula M, et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study[J]. Atherosclerosis, 2011, 219(1):211-217. [29] Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease[J]. Circ Res, 2010, 107(5):677-684. [30] Cheng Y, Ji R, Yue J, et al. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy[J] ? Am J Pathol, 2007, 170(6):1831-1840. [31] Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy[J]. J Mol Cell Cardiol, 2007, 42(6):1137-1141. [32] Sayed D, Hong C, Chen IY, et al. MicroRNAs play an essential role in the development of cardiac hypertrophy[J]. Circ Res, 2007, 100(3):416-424. [33] van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure[J]. Proc Natl Acad Sci U S A, 2006 103(48):18255-18260. [34] Carrillo ED, Escobar Y, Gonzalez G, et al. Posttranscriptional regulation of the β2 subunit of cardiac L-type Ca2+ channels by microRNAs during long-term exposure to isoproterenol in rats[J]. J Cardiovasc Pharmacol, 2011, 58(5):470-478. [35] Patrick DM, Montgomery RL, Qi X, et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice[J]. J Clin Invest, 2010, 120(11):3912-3916. [36] van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J]. Proc Natl Acad Sci U S A, 2008, 105(35):13027-13032. [37] Dong S, Cheng Y, Yang J, et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction[J]. J Biol Chem, 2009, 284(43):29514-29525. [38] Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20[J]. Circulation, 2009, 119(17):2357-2366. [39] Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice[J]. FEBS Lett, 2008, 582(30):4137-4142. [40] Mukhopadhyay P, Mukherjee S, Ahsan K, et al. Restoration of altered microRNA expression in the ischemic heart with resveratrol[J]. PLoS One, 2010, 5(12):e15705. [41] Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70[J]. Circ Res, 2009, 104(5):572-575. [42] Kotlo KU, Hesabi B, Danziger RS. Implication of microRNAs in atrial natriuretic peptide-and nitric oxide signaling in vascular smooth muscle cells[J]. Am J Physiol Cell Physiol, 2011, 301(4):C929-937. [43] Ikeda S, Kong SW, Lu J, et al. Altered microRNA expression in human heart disease[J]. Physiol Genomics, 2007, 31(3):367-373. [44] Corsten MF, Dennert R, Jochems S, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease[J]. Circ Cardiovasc Genet, 2010, 3(6):499-506. [45] Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure[J]. Circulation, 2007,116(3):258-267. [46] Cheng Y, Liu X, Zhang S, et al. MicroRNA-21 protects against the H(2)O(2)-induced injury on cardiac myocytes via its target gene PDCD4[J]. J Mol Cell Cardiol, 2009, 47(1):5-14. [47] Wu C, So J, Davis-Dusenbery BN, et al. Hypoxia potentiates microRNA-mediated gene silencing through posttranslational modification of Argonaute2[J]. Mol Cell Biol, 2011, 31(23):4760-4774. [48] von der Thusen JH, van Vlijmen BJ, Hoeben RC, et al. Induction of atherosclerotic plaque rupture in apolipoprotein E-/- mice after adenovirus-mediated transfer of p53[J]. Circulation, 2002, 105(17):2064-2070. [49] Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload[J]. Nature, 2007, 446(7134):444-448. [50] van der Heiden K, Cuhlmann S, Luong le A, et al. Role of nuclear factor kappaB in cardiovascular health and disease[J]. Clin Sci (Lond), 2010, 118(10):593-605. |
[1] | LI Shixu, LI Linyun, WANG Xin, LI Ke, BIAN Hua. Effects of Ginkgo biloba extract on renal injury in rats with experimental renal failure through miR-145/FOXO1 axis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 728-735. |
[2] | CAI Zichun, JIANG Yuanzhen, ZHANG Chunsheng, LI Jiming. Research progress and application prospects of circRNA in cardiovascular diseases [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(4): 397-404. |
[3] | PENG Fusheng, HUANG Xiaohui, LI Peng, TANG Jian'er. miR-34a inhibits proliferation of prostate cancer LNCaP cells by regulating androgen receptor gene [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(1): 10-17. |
[4] | WANG Fengling, MENG Xiangyun, CHEN Zhengxu, CAO Rongjuan, HE Zhengmin, YE Xi, WANG Cong, LI Qi. Analysis on genetic polymorphism of SLCO1B1 and ApoE in patients with cardiovascular diseases of Han nationality in Anhui area and its clinical significance for individualized use of statins [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(1): 40-48. |
[5] | YANG Ming, DONG Xiaowen, HONG Huashan. Statins for primary prevention of atherosclerotic cardiovascular disease in people 75 years of age and older [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(9): 1074-1080. |
[6] | XU Lina, LI Yue, PENG Jinyong. microRNA and drug-induced liver injury [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(7): 803-809. |
[7] | YAN Yu, LIU Kang, LIAN Wenwen, ZHANG Zhen, HE Jun. Research progress on roles of gut microbiota in cardiovascular disease and treatment [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(7): 829-834. |
[8] | JIANG Bingbing. Research progress on microRNAs in Huntington's disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2020, 25(6): 677-685. |
[9] | SHEN Lei, WANG Keke, YANG Jingke, ZHAO Juntao, MENG Xiangguang, YUAN Yiqiang. Advances in drugs and genetic pharmacology for heart failure [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(3): 343-349. |
[10] | ZHU Linjia, YUAN Shaofei, SHANGGUAN Zongxiao, CI Xiao, ZHAO Renguo, LI Yuping. Ultrasound-microbubbles mediated microRNA-449a inhibits lung cancer cell growth via the regulation of Notch1 [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(12): 1385-1393. |
[11] | HAN Chenyang, YANG Yi, LI Wenyang, WANG Jin, GUO Li. Inhibitory effect of MicroRNA-136 targeting CD163 on the polarization of CD68+CD163+M2 macrophages [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2019, 24(1): 1-8. |
[12] | SHEN Binbin, ZHOU Jun, LI Liang, LU Ning, YAO Ming. Long non-coding RNA TSIX regulates the proliferation of human pancreatic cancer cells by targeting miR-384 [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2018, 23(6): 621-626. |
[13] | LIU lei, LI Yixiao, WAN Bo, ZENG Qing. miR-200c induces resistance to doxorubicin through the Wnt/beta-catenin signaling pathway in bladder cancer cells [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2018, 23(5): 510-516. |
[14] | XU Ming, CUI Peng, YE Min, NI Xiong, WANG Tingfeng, MIN Zhijun. Insights into tumor suppression mechanism of miRNA-101 in medullary thyroid carcinoma [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2018, 23(5): 524-530. |
[15] | ZENG Zhenhua, LIU Jianxin, CAO Chunya, WU Weihua. Screening and bioinformatics analysis of differential microRNA in nitroglycerin-tolerant rat aorta [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2018, 23(10): 1081-1087. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||