Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2013, Vol. 18 ›› Issue (6): 696-704.
Previous Articles Next Articles
CAO Shan1, ZHOU Gan1, PENG Xiang-dong1,2, YANG Guo-ping3, ZHOU Hong-hao1
Received:
2013-01-25
Revised:
2013-04-16
Published:
2013-06-19
CLC Number:
CAO Shan, ZHOU Gan, PENG Xiang-dong, YANG Guo-ping, ZHOU Hong-hao. Role of Nrf2 in neuroprotection and its mechanisms[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2013, 18(6): 696-704.
[1] Finkel T. Signal transduction by reactive oxygen species [J]. J Cell Biol, 2011,194(1):7-15. [2] Ma Q.Transcriptional responses to oxidative stress: Pathological and toxicological implications[J]. Pharmacol Ther, 2010,125(3):376-393. [3] Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging[J]. Cell, 2005,120(4):483-495. [4] Bossy-Wetzel E, Schwarzenbacher R, Lipton SA. Molecular pathways to neurodegeneration[J]. Nat Med, 2004,10 Suppl(S2-9). [5] Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the keap1-nrf2-are pathway[J]. Annu Rev Pharmacol Toxicol, 2007,47:89-116. [6] Itoh K, Chiba T, Takahashi S, et al. An nrf2/small maf heterodimer mediates the induction of phase ii detoxifying enzyme genes through antioxidant response elements[J]. Biochem Biophys Res Commun, 1997,236(2):313-322. [7] Kwak MK, Itoh K, Yamamoto M, et al. Role of transcription factor nrf2 in the induction of hepatic phase 2 and antioxidative enzymes in vivo by the cancer chemoprotective agent, 3h-1, 2-dimethiole-3-thione[J]. Mol Med, 2001,7(2):135-145. [8] Chan JY, Kwong M. Impaired expression of glutathione synthetic enzyme genes in mice with targeted deletion of the nrf2 basic-leucine zipper protein[J]. Biochim Biophys Acta, 2000,1517(1):19-26. [9] Rushmore TH, Pickett CB. Transcriptional regulation of the rat glutathione s-transferase ya subunit gene. Characterization of a xenobiotic-responsive element controlling inducible expression by phenolic antioxidants[J]. J Biol Chem, 1990,265(24):14648-14653. [10]Rushmore TH, Morton MR, Pickett CB. The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity[J]. J Biol Chem, 1991,266(18):11632-11639. [11]Nioi P, McMahon M, Itoh K, et al. Identification of a novel nrf2-regulated antioxidant response element (are) in the mouse nad(p)h:Quinone oxidoreductase 1 gene: Reassessment of the are consensus sequence[J]. Biochem J, 2003,374(Pt 2):337-348. [12]Wasserman WW, Fahl WE. Functional antioxidant responsive elements[J]. Proc Natl Acad Sci USA, 1997,94(10):5361-5366. [13]Ma Q, He X. Molecular basis of electrophilic and oxidative defense: Promises and perils of nrf2[J]. Pharmacol Rev, 2012,64(4):1055-1081. [14]Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by nrf2 through binding to the amino-terminal neh2 domain[J]. Genes Dev, 1999,13(1):76-86. [15]Itoh K, Igarashi K, Hayashi N, et al. Cloning and characterization of a novel erythroid cell-derived cnc family transcription factor heterodimerizing with the small maf family proteins[J]. Mol Cell Biol, 1995,15(8):4184-4193. [16]Kataoka K, Igarashi K, Itoh K, et al. Small maf proteins heterodimerize with fos and may act as competitive repressors of the nf-e2 transcription factor[J]. Mol Cell Biol, 1995,15(4):2180-2190. [17]Takagi Y, Kobayashi M, Li L, et al. Maft, a new member of the small maf protein family in zebrafish[J]. Biochem Biophys Res Commun, 2004,320(1):62-69. [18]Kusunoki H, Motohashi H, Katsuoka F, et al. Solution structure of the DNA-binding domain of mafg[J]. Nat Struct Biol, 2002,9(4):252-256. [19]He CH, Gong P, Hu B, et al. Identification of activating transcription factor 4 (atf4) as an nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation[J]. J Biol Chem, 2001,276(24):20858-20865. [20]Venugopal R, Jaiswal AK. Nrf2 and nrf1 in association with jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes[J]. Oncogene, 1998,17(24):3145-3156. [21]Sun J, Hoshino H, Takaku K, et al. Hemoprotein bach1 regulates enhancer availability of heme oxygenase-1 gene[J]. EMBO J, 2002,21(19):5216-5224. [22]Leung L, Kwong M, Hou S, et al. Deficiency of the nrf1 and nrf2 transcription factors results in early embryonic lethality and severe oxidative stress[J]. J Biol Chem, 2003,278(48):48021-48029. [23]Kobayashi M, Itoh K, Suzuki T, et al. Identification of the interactive interface and phylogenic conservation of the nrf2-keap1 system[J]. Genes Cells, 2002,7(8):807-820. [24]Kobayashi A, Ito E, Toki T, et al. Molecular cloning and functional characterization of a new cap'n' collar family transcription factor nrf3[J]. J Biol Chem, 1999,274(10):6443-6452. [25]Toki T, Itoh J, Kitazawa J, et al. Human small maf proteins form heterodimers with cnc family transcription factors and recognize the nf-e2 motif[J]. Oncogene, 1997,14(16):1901-1910. [26]Katoh Y, Itoh K, Yoshida E, et al. Two domains of nrf2 cooperatively bind cbp, a creb binding protein, and synergistically activate transcription [J]. Genes Cells, 2001,6(10):857-868. [27]Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: Propellers of cell function[J]. Trends Cell Biol, 2000,10(1):17-24. [28]Kang MI, Kobayashi A, Wakabayashi N, et al. Scaffolding of keap1 to the actin cytoskeleton controls the function of nrf2 as key regulator of cytoprotective phase 2 genes [J]. Proc Natl Acad Sci U S A, 2004,101(7):2046-2051. [29]Dhakshinamoorthy S, Jaiswal AK. Functional characterization and role of inrf2 in antioxidant response element-mediated expression and antioxidant induction of nad(p)h:Quinone oxidoreductase1 gene [J]. Oncogene, 2001,20(29):3906-3917. [30]Zipper LM, Mulcahy RT. The keap1 btb/poz dimerization function is required to sequester nrf2 in cytoplasm[J]. J Biol Chem, 2002,277(39):36544-36552. [31]Wakabayashi N, Itoh K, Wakabayashi J, et al. Keap1-null mutation leads to postnatal lethality due to constitutive nrf2 activation[J]. Nat Genet, 2003,35(3):238-245. [32]Alam J, Killeen E, Gong P, et al. Heme activates the heme oxygenase-1 gene in renal epithelial cells by stabilizing nrf2[J]. Am J Physiol Renal Physiol, 2003,284(4):F743-752. [33]McMahon M, Itoh K, Yamamoto M, et al. Keap1-dependent proteasomal degradation of transcription factor nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression[J]. J Biol Chem, 2003,278(24):21592-21600. [34]Sekhar KR, Yan XX, Freeman ML. Nrf2 degradation by the ubiquitin proteasome pathway is inhibited by kiaa0132, the human homolog to inrf2[J]. Oncogene, 2002,21(44):6829-6834. [35]Stewart D, Killeen E, Naquin R, et al. Degradation of transcription factor nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium[J]. J Biol Chem, 2003,278(4):2396-2402. [36]Zhang DD, Hannink M. Distinct cysteine residues in keap1 are required for keap1-dependent ubiquitination of nrf2 and for stabilization of nrf2 by chemopreventive agents and oxidative stress[J]. Mol Cell Biol, 2003,23(22):8137-8151. [37]Furukawa M, He YJ, Borchers C, et al. Targeting of protein ubiquitination by btb-cullin 3-roc1 ubiquitin ligases[J]. Nat Cell Biol, 2003,5(11):1001-1007. [38]Geyer R, Wee S, Anderson S, et al. Btb/poz domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases[J]. Mol Cell, 2003,12(3):783-790. [39]Pintard L, Willis JH, Willems A, et al. The btb protein mel-26 is a substrate-specific adaptor of the cul-3 ubiquitin-ligase[J]. Nature, 2003,425(6955):311-316. [40]Xu L, Wei Y, Reboul J, et al. Btb proteins are substrate-specific adaptors in an scf-like modular ubiquitin ligase containing cul-3[J]. Nature, 2003,425(6955):316-321. [41]Tulsulkar J, Shah ZA. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism[J]. Neurochem Int, 2012,62(2):189-197. [42]de Vries D, Kortekaas K, Tsikas D, et al. Oxidative damage in clinical ischemia/reperfusion injury: A reappraisal[J]. Antioxid Redox Signal, 2013. [43]Sakata H, Niizuma K, Yoshioka H, et al. Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats[J]. J Neurosci, 2012,32(10):3462-3473. [44]Calkins MJ, Jakel RJ, Johnson DA, et al. Protection from mitochondrial complex ii inhibition in vitro and in vivo by nrf2-mediated transcription[J]. Proc Natl Acad Sci USA, 2005,102(1):244-249. [45]Jakel RJ, Kern JT, Johnson DA, et al. Induction of the protective antioxidant response element pathway by 6-hydroxydopamine in vivo and in vitro[J]. Toxicol Sci, 2005,87(1):176-186. [46]Lee JM, Shih AY, Murphy TH, et al. Nf-e2-related factor-2 mediates neuroprotection against mitochondrial complex i inhibitors and increased concentrations of intracellular calcium in primary cortical neurons[J]. J Biol Chem, 2003,278(39):37948-37956. [47]Shih AY, Imbeault S, Barakauskas V, et al. Induction of the nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo[J]. J Biol Chem, 2005,280(24):22925-22936. [48]Shih AY, Johnson DA, Wong G, et al. Coordinate regulation of glutathione biosynthesis and release by nrf2-expressing glia potently protects neurons from oxidative stress [J]. J Neurosci, 2003,23(8):3394-3406. [49]Burton NC, Kensler TW, Guilarte TR. In vivo modulation of the parkinsonian phenotype by nrf2 [J]. Neurotoxicology, 2006,27(6):1094-1100. [50]Jakel RJ, Townsend JA, Kraft AD, et al. Nrf2-mediated protection against 6-hydroxydopamine [J]. Brain Res, 2007,1144:192-201. [51]Kraft AD, Lee JM, Johnson DA, et al. Neuronal sensitivity to kainic acid is dependent on the nrf2-mediated actions of the antioxidant response element [J]. J Neurochem, 2006,98(6):1852-1865. [52]Satoh T, Kosaka K, Itoh K, et al. Carnosic acid, a catechol-type electrophilic compound, protects neurons both in vitro and in vivo through activation of the keap1/nrf2 pathway via s-alkylation of targeted cysteines on keap1 [J]. J Neurochem, 2008,104(4):1116-1131. [53]Satoh T, Okamoto SI, Cui J, et al. Activation of the keap1/nrf2 pathway for neuroprotection by electrophilic [correction of electrophillic] phase ii inducers [J]. Proc Natl Acad Sci USA, 2006,103(3):768-773. [54]Nagai M, Re DB, Nagata T, et al. Astrocytes expressing als-linked mutated sod1 release factors selectively toxic to motor neurons [J]. Nat Neurosci, 2007,10(5):615-622. [55]Vargas MR, Pehar M, Cassina P, et al. Increased glutathione biosynthesis by nrf2 activation in astrocytes prevents p75ntr-dependent motor neuron apoptosis [J]. J Neurochem, 2006,97(3):687-696. [56]Calkins MJ, Johnson DA, Townsend JA, et al. The nrf2/are pathway as a potential therapeutic target in neurodegenerative disease [J]. Antioxid Redox Signal, 2009,11(3):497-508. [57]Ma Q. Role of nrf2 in oxidative stress and toxicity [J]. Annu Rev Pharmacol Toxicol, 2013,53:401-426. [58]He X, Chen MG, Lin GX, et al. Arsenic induces nad(p)h-quinone oxidoreductase i by disrupting the nrf2 x keap1 x cul3 complex and recruiting nrf2 x maf to the antioxidant response element enhancer [J]. J Biol Chem, 2006,281(33):23620-23631. [59]Kobayashi A, Kang MI, Okawa H, et al. Oxidative stress sensor keap1 functions as an adaptor for cul3-based e3 ligase to regulate proteasomal degradation of nrf2 [J]. Mol Cell Biol, 2004,24(16):7130-7139. [60]Zhang DD, Lo SC, Cross JV, et al. Keap1 is a redox-regulated substrate adaptor protein for a cul3-dependent ubiquitin ligase complex [J]. Mol Cell Biol, 2004,24(24):10941-10953. [61]Tong KI, Katoh Y, Kusunoki H, et al. Keap1 recruits neh2 through binding to etge and dlg motifs: Characterization of the two-site molecular recognition model [J]. Mol Cell Biol, 2006,26(8):2887-2900. [62]Bloom DA, Jaiswal AK. Phosphorylation of nrf2 at ser40 by protein kinase c in response to antioxidants leads to the release of nrf2 from inrf2, but is not required for nrf2 stabilization/accumulation in the nucleus and transcriptional activation of antioxidant response element-mediated nad(p)h:Quinone oxidoreductase-1 gene expression [J]. J Biol Chem, 2003,278(45):44675-44682. [63]Huang HC, Nguyen T, Pickett CB. Regulation of the antioxidant response element by protein kinase c-mediated phosphorylation of nf-e2-related factor 2 [J]. Proc Natl Acad Sci USA, 2000,97(23):12475-12480. [64]Numazawa S, Ishikawa M, Yoshida A, et al. Atypical protein kinase c mediates activation of nf-e2-related factor 2 in response to oxidative stress [J]. Am J Physiol Cell Physiol, 2003,285(2):C334-342. [65]Buckley BJ, Marshall ZM, Whorton AR. Nitric oxide stimulates nrf2 nuclear translocation in vascular endothelium [J]. Biochem Biophys Res Commun, 2003,307(4):973-979. [66]Zipper LM, Mulcahy RT. Inhibition of erk and p38 map kinases inhibits binding of nrf2 and induction of gcs genes [J]. Biochem Biophys Res Commun, 2000,278(2):484-492. [67]Kang KW, Choi SH, Kim SG. Peroxynitrite activates nf-e2-related factor 2/antioxidant response element through the pathway of phosphatidylinositol 3-kinase: The role of nitric oxide synthase in rat glutathione s-transferase a2 induction [J]. Nitric Oxide, 2002,7(4):244-253. [68]Nakaso K, Yano H, Fukuhara Y, et al. Pi3k is a key molecule in the nrf2-mediated regulation of antioxidative proteins by hemin in human neuroblastoma cells [J]. FEBS Lett, 2003,546(2/3):181-184. [69]Huang HC, Nguyen T, Pickett CB. Phosphorylation of nrf2 at ser-40 by protein kinase c regulates antioxidant response element-mediated transcription [J]. J Biol Chem, 2002,277(45):42769-42774. |
[1] | LIU Lijing, QIAN Hong, MENG Qingxin, ZHANG Xiang, HE Bin, HE Jianbin, WEI Yingmin. Sinomenine inhibits oxidative stress and pulmonary fibrosis by activating the Keap1/Nrf2 signaling pathway [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(9): 979-987. |
[2] | WANG Jingang, LI Qiang, SUN Huiyan, WANG Hongquan. Recent progress in understanding the neuroprotective mechanism of carnosic acid in Parkinson's disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(9): 1073-1080. |
[3] | WANG Kun, XU Peipei, ZHOU Lanlan, LU Sheng. Mechanism of neuroprotective effect of ginsenoside Rg1 regulating Epac1/Rap1 signaling pathway in rats with ischemic stroke [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 721-727. |
[4] | LI Yating, YUE Hongmei, LIU Miaomiao, XU Jinhui, WU Xingdong, ZHU Haobin. The possibility of phosphodiesterase 4 inhibitors as drug therapy for idiopathic pulmonary fibrosis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(7): 818-823. |
[5] | WANG Donghui, JIANG Suwen, HU Airong, ZHU Bo, HE Zheyun, ZHANG Lukan, WANG Jialan, FAN Ying, LIN Ken . Mulberry exerts antioxidant stress effect in rats with nonalcoholic fatty liver disease [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(6): 609-616. |
[6] | HOU Xiaoyu, LENG Yufang, CAO Xuefen, LV Xingjiao, HAN Xiaoxia, Janvier NIBARUTA, LIU Yongqiang. Network analysis and experimental verification of Schisandrin B reduces intestinal ischemia reperfusion injury [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 147-154. |
[7] | BAI Jia, YANG Hong, LI Lingling, ZHANG Yangyang, YANG Ying, LV Haihong. Study on the effect of vitamin D on diabetic neuropathy through mitochondrial/autophagy pathway [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 214-219. |
[8] | ZHU Haobin, YUE Hongmei, WU Xingdong, LIU Miaomiao, LI Yating, XU Jinhui. Research progress on the role of the Nrf2 signaling pathway in the complications associated with obstructive sleep apnea [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(11): 1283-1291. |
[9] | YANG Zhian, ZHAO Yan, HE Yao, LIU Weiying, YU Qin. Pyroptosis mediated renal injury caused by chronic intermittent hypoxia and the intervention effect of edaravone in rats [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(1): 10-18. |
[10] | HUA Haiyan, YAN Jie, QIN Yufen. Experimental study of schisandrin B attenuates acute myocardial ischemia injury in rats by inhibiting cardiomyocyte apoptosis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 848-856. |
[11] | WANG Jinhuo, GAO Xinyue, GUO Jianrong. Effect of COX-2 inhibitors on postoperative delirium in elderly patients undergoing orthopedic surgery and its possible mechanism [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 863-869. |
[12] | LI Xueheng, LI Long. Research progress on the relationship between melatonin and idiopathic pulmonary fibrosis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 715-720. |
[13] | ZHANG Li, WANG Jin, LI Huizi, PENG Hui, HE Jun, PENG Shuangqing, GUO Jiabin. Role of Nrf2 pathway in flutamide-induced mitochondrial biogenesis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(5): 498-504. |
[14] | WANG Xinli, XU Xiaqing, FANG Hanbing, GUO Yuzhong. Study of TPA on enhancing the anti-tumor effects of cisplatin and reducing its renal toxicity [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(5): 535-543. |
[15] | REN Yixing, LENG Yufang, GUO Mingjun, ZHANG Jianmin, SHI Yajing, CHEN Feng, LIU Xin. Role and mechanism of SIRT3 in attenuation of intestinal ischemia-reperfusion injury by dexmedetomidine in mice [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(3): 253-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||