[1] 中华耳鼻咽喉头颈外科杂志编委会,中华医学会耳鼻咽喉科学分会. 儿童阻塞性睡眠呼吸暂停低通气综合征诊疗指南草案(乌鲁木齐)[J]. 中华耳鼻咽喉头颈外科杂志, 2007, 42(2):83-84. [2] Kirk V, Baughn J, D′andrea L, et al. American academy of sleep medicine position paper for the use of a home sleep apnea test for the diagnosis of OSA in children[J]. J Clin Sleep Med, 2017, 13(10):1199-1203. [3] Mei L, Li X, Zhou G, et al. Effects of obstructive sleep apnoea severity on neurocognitive and brain white matter alterations in children according to sex: A tract-based spatial statistics study[J]. Sleep Med, 2021, 82: 134-143. [4] Li AM, So HK, Au CT, et al. Epidemiology of obstructive sleep apnoea syndrome in Chinese children: A two-phase community study[J]. Thorax, 2010, 65(11):991-997. [5] 倪鑫,高志强,韩德民,等. 中国儿童阻塞性睡眠呼吸暂停诊断与治疗指南(2020)[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(8):729-747. [6] Kaditis AG, Alonso Alvarez ML, Boudewyns A, et al. Obstructive sleep disordered breathing in 2- to 18-year-old children: Diagnosis and management[J]. Eur Respir J, 2016, 47(1):69-94. [7] Tseng PH, Lee PL, Hsu WC, et al. A higher proportion of metabolic syndrome in Chinese subjects with sleep-disordered breathing: A case-control study based on electrocardiogram-derived sleep analysis[J]. PLoS ONE, 2017, 12(1):e0169394. [8] Chan KC, Au CT, Hui LL, et al. Childhood OSA is an independent determinant of blood pressure in adulthood: Longitudinal follow-up study[J]. Thorax, 2020, 75(5):422-431. [9] Idiazábal-Alecha MÁ, Fernández-Prats M. Sleep-disordered breathing in early childhood: Their neurocognitive repercussions[J]. Rev Neurol, 2014, 58(Suppl 1):83-88. [10] 张一彤, 刘海琴, 任晓勇. 儿童阻塞性睡眠呼吸暂停相关认知障碍的研究现状、问题与展望[J]. 山东大学耳鼻喉眼学报, 2021, 35(2):119-124. [11] Gupta MA, Simpson FC. Obstructive sleep apnea and psychiatric disorders: A systematic review[J]. J Clin Sleep Med, 2015, 11(2):165-175. [12] Lu MK, Tan HP, Tsai IN, et al. Sleep apnea is associated with an increased risk of mood disorders: A population-based cohort study[J]. Sleep Breath, 2017, 21(2):243-253. [13] Kheirandish-Gozal L, Yoder K, Kulkarni R, et al. Preliminary functional MRI neural correlates of executive functioning and empathy in children with obstructive sleep apnea[J]. Sleep, 2014, 37(3):587-592. [14] Huang Y, Liu Y, Zhao D, et al. Small-world properties of the whole-brain functional networks in patients with obstructive sleep apnea-hypopnea syndrome[J]. Sleep Med, 2019, 62: 53-58. [15] Park B, Palomares JA, Woo MA, et al. Aberrant insular functional network integrity in patients with obstructive sleep apnea[J]. Sleep, 2016, 39(5):989-1000. [16] Urbano GL, Tablizo BJ, Moufarrej Y, et al. The link between pediatric obstructive sleep apnea (OSA) and attention deficit hyperactivity disorder (ADHD)[J]. Children (Basel), 2021, 8(9):824. [17] Fan Y, Chou MC, Liu YC, et al. Intermittent hypoxia activates N-Methyl-D-Aspartate receptors to induce anxiety behaviors in a mouse model of sleep-associated apnea[J]. Mol Neurobiol, 2021, 58(7):3238-3251. [18] Dayyat EA, Zhang SX, Wang Y, et al. Exogenous erythropoietin administration attenuates intermittent hypoxia-induced cognitive deficits in a murine model of sleep apnea[J]. BMC Neurosci, 2012, 13(1):77. [19] Zhang M, Wu J, Huo L, et al. Environmental enrichment prevent the juvenile hypoxia-induced developmental loss of parvalbumin-immunoreactive cells in the prefrontal cortex and neurobehavioral alterations through inhibition of NADPH oxidase-2-derived oxidative stress[J]. Mol Neurobiol, 2016, 53(10):7341-7350. [20] Nair D, Ramesh V, Li RC, et al. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse[J]. J Neurochem, 2013, 127(4):531-540. [21] Bertrand SJ, Zhang Z, Patel R, et al. Transient neonatal sleep fragmentation results in long-term neuroinflammation and cognitive impairment in a rabbit model[J]. Exp Neurol, 2020,327:113212. [22] Grubac Z, Sutulovic N, Ademovic A, et al. Short-term sleep fragmentation enhances anxiety-related behavior: The role of hormonal alterations[J]. PLoS One, 2019, 14(7):e0218920. [23] Grubac Z, Sutulovic N, Suvakov S, et al. Anxiogenic potential of experimental sleep fragmentation is duration-dependent and mediated via oxidative stress state[J]. Oxid Med Cell Longev, 2021, 2021: 2262913. [24] Xie Y, Ba L, Wang M, et al. Chronic sleep fragmentation shares similar pathogenesis with neurodegenerative diseases: Endosome-autophagosome-lysosome pathway dysfunction and microglia-mediated neuroinflammation[J]. CNS Neurosci Ther, 2020, 26(2):215-227. [25] 贺亚晴, 计一丁, 沈钧康. 阻塞性睡眠呼吸暂停低通气综合征患者神经认知功能损伤的磁共振成像研究进展[J]. 医学综述, 2021, 27(20):4118-4122. [26] Zhou L, Liu G, Luo H, et al. Aberrant hippocampal network connectivity is associated with neurocognitive dysfunction in patients with moderate and severe obstructive sleep apnea[J]. Front Neurol, 2020, 11: 580408. [27] Zhou L, Shan X, Peng Y, et al. Reduced regional homogeneity and neurocognitive impairment in patients with moderate-to-severe obstructive sleep apnea[J]. Sleep Med, 2020, 75: 418-427. [28] Yu H, Chen L, Li H, et al. Abnormal resting-state functional connectivity of amygdala subregions in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2019, 15: 977-987. [29] Song X, Roy B, Kang DW, et al. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea[J]. Brain Behav, 2018, 8(6):e00994. [30] Zhang Q, Qin W, He X, et al. Functional disconnection of the right anterior insula in obstructive sleep apnea[J]. Sleep Med, 2015, 16(9):1062-1070. |