[1]赵仁, 赵毅, 李东明. 珠子参研究进展[J]. 中国现代中药, 2008, 10 (7): 3-6.
[2]国家药典委员会. 中国药典(一部)[M]. 北京: 中国医药科技出版社, 2015: 271-272.
[3]Chan HH, Sun HD, Reddy MVB, et al. Potent α-glucosidase inhibitors from the roots of Panax japonicus C. A. Meyer var. major[J]. Phytochemistry, 2010, 71(1112): 1360-1364.
[4]金家红, 贺海波, 石孟琼, 等. 珠子参总皂苷对小鼠局灶性脑缺血的保护作用[J]. 第三军医大学学报, 2011, 33 (24): 2631-2633.
[5]Ou JJ, Kou L, Liang LY, et al. MiR-375 attenuates injury of cerebral ischemia/reperfusion via targetting Ctgf [J]. Biosci Rep, 2017, 37(6): BSR20171242.
[6]El-Marasy SA, Abdel-Rahman RF, Abd-Elsalam RM. Neuroprotective effect of vildagliptin against cerebral ischemia in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2018, 391 (10): 1133-1145.
[7]Wang Y, Tu L, Li YB, et al. Notoginsenoside R1 protects against neonatal cerebral hypoxic-ischemic injury through estrogen receptor-dependent activation of endoplasmic reticulum stress pathways[J]. J Pharmacol Exp Ther, 2016, 357 (3): 591-605.
[8]He HB, Li XM, Li DJ, et al. Saponins from Rhizoma Panacis Majoris attenuate myocardial ischemia/reperfusion injury via the activation of the Sirt1/FoxO1/Pgc-1α and Nrf2/ antioxidant defense pathways in rats[J]. Pharmacognosy Magazine, 2018, 14 (56): 297- 307.
[9]Huang SL, He HB, Zou K, et al. Protective effect of tomatine against hydrogen peroxide-induced neurotoxicity in neuroblastoma (SH-SY5Y) cells[J]. J Pharm Pharm, 2014, 66 (6): 844-854.
[10]Kanavaki A, Spengos K, Moraki M, et al. Serum levels of S100b and NSE proteins in patients with non-transfusion-dependent thalassemia as biomarkers of brain ischemia and cerebral vasculopathy[J]. Int J Mol Sci, 2017, 18 (12): pii: E2724.
[11]Leonard SS, Harris GK, Shi X. Metal-induced oxidative stress and signal transduction[J]. Free Radic Biol Med, 2004, 37 (12): 1921-1942.
[12]徐慧, 张民远, 戴勤学. miR-145通过调节SOD活性介导人参皂苷Rb1对脑缺血再灌注损伤大鼠的脑保护作用[J]. 中国临床药理学与治疗学, 2018, 23(1): 1215-1220.
[13]Khwanraj K, Madlah S, Grataitong K, et al. Comparative mRNA expression of eEF1A isoforms and a PI3K/Akt/mTOR pathway in a cellular model of Parkinson's disease[J]. Parkinsons Dis, 2016: 8716016.
[14]Chen A, Xiong LJ, Tong Y, et al. Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway[J]. Mol Med Rep, 2013, 8 (4): 1011-1016.
[15]Tu L, Wang Y, Chen D, et al. Protective effects of Notoginsenoside R1 via regulation of the PI3K-Akt-mTOR/JNK pathway in neonatal cerebral hypoxic-ischemic brain injury[J]. Neurochem Res, 2018,43 (6): 1210- 1226.
[16]Huang LF, Chen CW, Zhang X, et al. Neuroprotective effect of curcumin against cerebral ischemia-reperfusion via mediating autophagy and inflammation[J]. J Mol Neurosci, 2018, 64 (1): 129-139.
[17]Guo XD, Sun GL, Zhou TT, et al. Small molecule LX2343 ameliorates cognitive deficits in AD model mice by targeting both amyloid β production and clearance[J]. Acta Pharmacol Sin, 2016, 37 (10): 1281-1297.
[18]Pan YD, Wang N, Xia PP, et al. Inhibition of Rac1 ameliorates neuronal oxidative stress damage via reducing Bcl-2/Rac1 complex formation in mitochondria through PI3K/ Akt/mTOR pathway[J]. Exp Neurol, 2018, 300: 149-166.
[19]Chong SJ, Low IC, Pervaiz S. Mitochondrial ROS and involvement of Bcl-2 as a mitochondrial ROS regulator[J]. Mitochondrion, 2014, 19 (Part A): 39-48.
[20]Han B, Jiang P, Li ZX, et al. Coptisine-induced apoptosis in human colon cancer cells (HCT-116) is mediated by PI3K/Akt and mitochondrial-associated apoptotic pathway[J]. Phytomedicine, 2018, 48: 152-160.
[21]Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death[J]. Nat Rev Mol Cell Biol, 2008, 9 (1): 47-59.
[22]Ryu DS, Kim SH, Kwon JH, et al. Orostachys japonicus induces apoptosis and cell cycle arrest through the mitochondria-dependent apoptotic pathway in AGS human gastric cancer cells[J]. Int J Oncol, 2014, 45(1): 459-469. |