Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2011, Vol. 16 ›› Issue (3): 334-340.
Previous Articles Next Articles
WU Hui-zi, LIU Jie
Received:
2011-02-10
Revised:
2011-02-25
Online:
2011-03-26
Published:
2011-05-18
CLC Number:
WU Hui-zi, LIU Jie. Pharmacogenetics in breast cancer: hormone therapy and chemotherapy[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2011, 16(3): 334-340.
[1] 周彩存. 药物遗传学在肿瘤化疗中的应用[J]. 肿瘤, 2006, 26(2): 109-111. [2] 刘昭前,周宏灏. 个体化药物治疗的新时代[J]. 中国临床药理学与治疗学, 2007, 12(1):1-6. [3] 华之卉,侯颖,宋洪涛. 部分抗肿瘤药物基因组学研究进展[J]. 中国临床药理学与治疗学,2009,14(6):701-706. [4] Stearns V, Johnson MD, Rae JM, et al. Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine[J]. J Natl Cancer Inst, 2003 , 95(23) :1758-1764. [5] 李芹,王睿. 细胞色素P4502D6基因多态性和药物相互作用[J]. 中国临床药理学与治疗学, 2006, 11(4): 369-374. [6] Goetz MP, Rae JM, Suman VJ, et al. Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes[J]. J Clin Oncol, 2005, 23(36):9312-9318. [7] Goetz MP, Kamal A, Ames MM. Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response[J]. Clin Pharmacol Ther, 2008, 83(1) : 160-166. [8] Kumar CK, Reddy M, Jamil K, et al. Genotyping of tamoxifen metabolizing enzyme (CYP2D6*4) and its clinical impact in breast cancer patients[J]. Int J Genet Mol Biol, 2010, 2(1): pp. 006-013. [9] Kiyotani K, Mushiroda T, Sasa M, et al. Impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy[J]. Cancer Sci , 2008 ,99(5):995-999. [10] Xu Y, Sun Y, Yao L, et al. Association between CYP2D6*10 genotype and survival of breast cancer patients receiving tamoxifen treatment[J]. Ann Oncol 2006,19(8):1423-1429. [11] Jin Y, Desta Z,Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment[J]. J Natl Cancer Inst, 2005, 97(1) :30-39. [12] Wegman P, Elingarami S, Carstensen J, et al. Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer[J]. Breast Cancer Res, 2007 , 9(1):R7. [13] Tucker AN, Tkaczuk KA, Lewis LM, et al. Polymorphisms in cytochrome P4503A5 (CYP3A5) may be associated with race and tumor characteristics, but not metabolism and side effects of tamoxifen in breast cancer patients[J]. Cancer Lett, 2005, 217(1) :61-72. [14] Nowell S, Sweeney C, Winters M, et al. Association between sulfotransferase 1A1genotype and survival of breast cancer patients receiving tamoxifen therapy[J]. J Natl Cancer Inst, 2002 , 94(21) :1635-1640. [15] Mercer KE, Apostolov EO, da Costa GG, et al. Expression of sulfotransferase isoform 1A1 (SULT1A1) in breast cancer cells significantly increases 4-hydroxytamoxifen-induced apoptosis[J]. Int J Mol Epidemiol Genet, 2010,1(2):92-103. [16] Ma CX, Adjei AA, Salavaggione OE, et al. Human aromatase: gene resequencing and functional genomics[J]. Cancer Res, 2005 , 65(23):11071-11082. [17] Colomer R, Monzo M, Tusquets I, et al. A singlenucleotide polymorphism in the aromatase gene is associatedwith the efficacy of the aromatase inhibitor letrozole in advanced breast carcinoma [J]. Clin Cancer Res, 2008 , 14(3):811-816. [18] Lopez-Guerrero JA, Garcia-Casado Z, Guerrero-Zotan AL, et al. Corroboration of polymorphisms in the aromatase (CYP19A1) genewith response to neoadjuvant therapy with letrozole in postmenopausal women with stages II-II ER/PgR-positive breast cancer [J]. J Clinical Oncol(Meetig Abstracts) , 2007, 25(18S):602. [19] Maser E, Richter E, Friebertshäuser J, et al. The identification of 11 beta-hydroxysteroid dehydrogenase as carbonyl reductase of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone [J]. Eur J Biochem , 1996 , 238(2); 484-489. [20] Sciotti M, Wermuth B. Coenzyme specificity of muman monomeric carbonyl reductase,contribubtion of Lys-15,Ala-37 and Arg-38 [J]. Chem Biol Interact ,2001, 130-132(1/2/3):871-878. [21] Forrest GL, Gonzalez B. Carbonyl reductase [J]. Chem Biological Interact, 2000,129(1/2):21-40. [22] Lal S, Sandanaraj E, Wong ZW, et al. CBR1 and CBR3 pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer patients [J]. Cancer Sci , 2008 , 99(10):2045-2054. [23] Fan L, Goh BC, Wong CI,et al. Genotype of human carbonyl reductase CBR3 correlates with doxorubicin disposition and toxicity [J]. Pharmacogenet Genomics, 2008, 18(7):623-631. [24] Lal S, Wong ZW, Sandanaraj E, et al. Influence of ABCB1 and ABCG2 polymorphisms on doxorubincin disposition in Asian breast cancer patients [J].Cancer Sci , 2008 , 99(4):816-823. [25] Lal S, Wong ZW, Jada SR, et al. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacogenetics in Asian breast cancer patients[J]. Pharmacogenomics , 2007,8(6):567-575. [26] Henningsson A, Marsh S, Loos WJ, et al. Association of CYP2C8, CYP3A4, CYP3A5, and ABCB1 polymorphisms with the pharmacokinetics of paclitaxel [J]. Clin Cancer Res, 2005 , 11(22):8097-8104. [27] Marsh S, Somlo G, Li X, et al. Pharmacogenetic analysis of paclitaxel transport and metabolism genes in breast cancer[J]. Pharmacogenomics J, 2007, 7(5),362-365. [28] Hoffmeyer S, Burk O, Richter O, et al. Functional polymorphisms of the human multidrug-resistance gene:multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo [J]. Proc Natl Acad Sci, 2000, 97(7): 3473-3478. [29] Tanabe M, Ieiri I, Nagata N, et al. Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance(MDR)-1 gene[J]. J Pharmacol Exp Ther, 2001, 297(3): 1137-1143. [30] Kim RB, Leake BF, Choo EF, et al. Identification of functionally variant MDR1 alleles among European Americans and African Americans[J]. Clin Pharmacol Ther, 2001, 70(20) :189-199. [31] Goh BC, Lee SC, Wang LZ, et al. Explaining interindividual variability of docetaxel pharmacokinetics and pharmacodynamics in Asians through phenotyping and genotying strategies[J]. J Clin Oncol, 2002, 20(17):3683-3690. [32] Marsh S, Paul J, King CR, et al. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer:the Scottish Randomised Trial in Ovarian Cancer[J]. J Clin Oncol, 2007, 25(29): 4528-4535. [33] Chang H, Rha SY, Jeung HC, et al. Association of the ABCB1 gene polymorphisms 2677G>T/A and 3435C>T with clinical outcomes of paclitaxel monitherapy in metastatic breast cancer patients[J]. Ann Oncol, 2009, 20(2): 272-277. [34] Bepler G, Zheng Z, Gautam A, et al. Riboncleotide reductase M1 gene promoter activity,polymorphisms,population frequencies,and clinical relevance[J]. Lung Cancer, 2005, 47(2): 183-192. [35] Yeo W, Soong RC, Chuah BY, et al. Correlation of RRM1 promoter region single nucleotide polymorphisms (SNPs) with response and outcome in breast cancer patients treated with gemctabine-based chemotherapy[J]. J Clin Oncol, 2008, 26: 14513. [36] Rha SY, Jeung HC, Choi YH, et al. An association between RRM1 haplotype and gemcitabine-induced neutropenia in breast cancer patients[J]. Oncologist,2007, 12(6): 622-630. [37] Gilbert JA, Salavaggione OE, Ji Y, et al. Gemcitabine pharmacogenomics : Cytidine deaminase and deoxycytidylate deaminase gene resequencing and functional genomics[J]. Clin Cancer Res, 2006, 12(6): 1794-1803. [38] Yue L, Saikawa Y, Ota K, et al. A functional single-nucleotide polymorphsim in the human cytidine deaminase gene contributiong to ara-C sensitivity[J]. Pharmocogenetics, 2003, 13(1): 29-38. [39] Yonemori K, Ueno H, Okusaka T, et al. Severe drug toxicity associated with a single-nucleotide polymorphism of the cytidine deaminase gene in a Japanese cancer patient treated with gemcitabine plus cisplatin[J]. Clin Cancer Res, 2005, 11(7): 2620-2624. [40] Sugiyama E, Kaniwa N, Kim SR, et al.Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism[J]. J Clin Oncol, 2007, 25(1): 32-42. [41] Tan SH, Lee SC, Goh BC, et al. Pharmacogenetics in breast cancer therapy[J]. Clin Cancer Res, 2008, 14(24): 8027-8041. [42] Watters JW, McLeod HL. Cancer pharmacogenomics:current and future applications[J]. Biochimic Biophysic Acta, 2003, 1603(2):99-111. [43] Kumar K, Vamsy M, Jamil K. Thymidylate synthase gene polymorphisms effecting 5-FU response in breast cancer patients[J]. Cancer Biomark, 2010, 6(2): 83-93. [44] Kawakami K, Salonga D, Park JM, et al. Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression[J]. Clin Cancer Res, 2001, 7(12): 4096-101. [45] Van Kuilenburg AB. Dihydropymidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil[J]. Eur J Cancer, 2004 , 40(7): 939-950. [46] Gross E, Busse B, Riemenschneider M, et al. Strong association of a common dihydropyrimidine dehydrogenase gene polymorphism with fluoropyrimidine related toxicity in cancer patients[J]. PloS One, 2008, 3(12): e4003. |
[1] | HE Lihua, ZHU Xiuzhi, JIANG Yizhou. Research progress on immunotherapy for triple-negative breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 842-853. |
[2] | ZHANG Huyunlong, ZHU Xiuzhi, JIN Xi, SHAO Zhimin. Mechanisms of endocrine-resistance and therapeutic breakthroughs in hormone receptor-positive, HER2-negative breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 854-865. |
[3] | FU Xiaoyu, KONG Deguang, LI Juanjuan. Treatment progress of triple positive breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 866-875. |
[4] | LUO Shiping, ZHANG Jie, YU Yushuai, SONG Chuangui. Advances in targeted therapy for HER2-positive breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 876-886. |
[5] | XIANG Yimei, ZHANG Ningning, HUANG Yuxin, ZENG Xiaohua. Research progress of biomarkers related to the efficacy of HER2 positive breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 887-897. |
[6] | CHEN Keyu, HUANG Yuan, WANG Xiaojia, ZHENG Yabing. Clinical application and research progress of antibody drugs conjugation in breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 898-909. |
[7] | LI Mengxi, ZHANG Kejing, XIA Fan. Research progress in vaccine for breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 918-925. |
[8] | WANG Zhi, ZHOU Xin, HE Xueru, FU Yuhao, XUN Xuejiao, LI Ying, DONG Zhanjun. Clinical research progress of palbociclib in treatment of breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 205-213. |
[9] | WANG Xiu, JI Qilin, PEI Wenjun, ZENG Ying. 3-bromopyruvate cholesterol ester enhances the sensitivity of breast cancer cells to tamoxifen [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1093-1100. |
[10] | WU Shuai, YANG Jun, ZHENG Yun. Dual role of miRNA in breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(7): 814-821. |
[11] | SHI Jingbin, XIONG Yang. Research progress on interaction between tumor microenvironment and breast cancer cells leading to tumor metastasis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(5): 562-574. |
[12] | DONG Wei, HUANG Xiaoying, XIE Bingbin, TANG Xilan, LI Hongming, QIU Yumei, ZHAO Guowei, LIANG Xinli. Effects of oxypeucedanin on the resistance of breast cancer MCF-7/DOX cells to doxorubicin [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(3): 260-266. |
[13] | XU Guofang, ZHANG Sisen, LIU Ping, MEI Jiazhuan, LIU Weiwei, LIU Ya'ou, QI Qi. Population pharmacokinetics of capecitabine in Chinese breast cancer patients [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(5): 552-559. |
[14] | SUN Hong, HOU Jialin, CAI Jiaqin, WEI Xiaoxia, ZHUANG Jie. SUMO E3 ligase mediates androgen receptor transcription to promote tamoxifen resistance of breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(3): 285-291. |
[15] | JIN Le, JIANG Duochen, CHEN Hongxiao, LIU Su, CHEN Zhaolin, JU Jing. Quercetin reverses adriamycin resistance by activating GSK-3β/β-catenin pathways through GAS5 in breast cancer cells [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2021, 26(12): 1344-1351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||