Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2014, Vol. 19 ›› Issue (9): 1069-1074.
Previous Articles Next Articles
LIANG Zheng-yu1, TANG Song-shan2, ZHOU Dong2
Received:
2013-07-06
Revised:
2014-06-23
Online:
2014-09-26
Published:
2014-09-26
CLC Number:
LIANG Zheng-yu, TANG Song-shan, ZHOU Dong. Advances in research of filament middle cerebral artery occlusion model and neuroprotective agents[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2014, 19(9): 1069-1074.
Add to citation manager EndNote|Ris|BibTeX
URL: https://manu41.magtech.com.cn/Jweb_clyl/EN/
https://manu41.magtech.com.cn/Jweb_clyl/EN/Y2014/V19/I9/1069
[1] | Seshadri S, Beiser A, Kelly-Hayes M, et al.The lifetime risk of stroke: estimates from the Framingham study[J]. Stroke, 2006, 37(2): 345-350. |
[2] | 王文志. 中国脑卒中流行病学特征和社区人群干预[J]. 中国医学前沿杂志,2009,1(2):49-53. |
[3] | Howells DW, Porrittl MJ, Rewell SS, et al.Different strokes for different folks: the rich diversity of animal models of focal cerebral ischemia[J]. J Cereb Blood Flow Metab, 2010, 30(8): 1412-1431. |
[4] | Longa EZ, Weinstein PR, Carlson S, et al.Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1): 84-91. |
[5] | Schmid-Elsaesser R, Zausinger S, Hungerhuber E, et al. A critical reevaluation of the intraluminal thread model of focal cerebral ischemia: evidence of inadvertent premature reperfusion and subarachnoid hemorrhage in rats by laser-Doppler flowmetry[J]. Stroke, 1998, 29(10)2162-2170. |
[6] | Woitzik J, Schilling L.Control of completeness and immediate detection of bleeding by a single laser-Doppler flow probe during intravascular middle cerebral artery occlusion in rats[J]. J Neurosci Methods, 2002, 122(1): 75-78. |
[7] | Dittmar M, Spruss T, Schuierer G, et al.External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats[J]. Stroke, 2003, 34(9): 2252-2257. |
[8] | Shimamura N, Matsuda N, Katayama K, et al. Novel rat middle cerebral artery occlusion model: trans-femoral artery approach combined with preservation of the external carotid artery [J]. J Neurosci Medthods, 2009, 15, 184(2): 195-198. |
[9] | Steele EC Jr, Guo Q, Namura S, et al.Filamentous middle cerebral artery occlusion causes ischemic damage to the retina in mice[J]. Stroke, 2008, 39(7): 2099-2104. |
[10] | Macrae I.New models of focal cerebral ischaemia[J]. Br J Clin Pharmacol, 1992, 34(4): 302-308. |
[11] | Zhang L, Zhang RL, Wang Y, et al.Functional recovery in aged and young rats after embolic stroke: treatment with a phosphodiesterase type 5 inhibitor[J]. Stroke, 2005, 36(4): 847-852. |
[12] | Oliff HS, Coyle P, Weber E, et al.Rat strain and vendor differences in collateral anastomoses[J]. J Cereb Blood Flow Metab, 1997, 17(5): 571-576. |
[13] | 王涛, 杜芳, 杨学伟, 等. 经典的小鼠大脑中动脉闭塞再灌注模型的建立和评价[J]. 中国临床神经科学,2007,15(1): 71-75. |
[14] | Spratt NJ, Fernandez J, Chen M, et al, Modification of the method of thread manufacture improves stroke induction rate and reduces mortality after thread-occlusion of the middle cerebral artery in young or aged rats[J]. Neurosci Methods, 2006, 155(2): 285-290. |
[15] | Liu S, Zhen G, Meloni BP, et al.Rodent stroke model guidelines for preclinical stroke trials(1st edition)[J]. Exp Stroke Transl Med, 2009, 2(2): 22-27. |
[16] | Ström JO, Ingberg E, Theodorsson A, et al.Method parameters' impact on mortality and variability in rat stroke experiments: a meta-analysis[J]. BMC Neurosci, 2013, 4(1): 14-41. |
[17] | Boyko M, Zlotnik A, Gruenbaum BF, et al.An experimental model of focal ischemia using an internal carotid artery approach[J]. J Neurosci Methods, 2010, 193(2): 246-253. |
[18] | Bhardwaj A, Alejandro F, Alkayed NJ, et al.Anesthetic choice of halothane versus propofol impact on experimental perioperative stroke[J]. Stroke, 2001, 32(8): 1920-1925. |
[19] | Li H, Yin J, Li L, et al.Isoflurane postconditioning reduces ischemia-induced nuclear factor-κB activation and interleukin 1β production to provide neuroprotection in rats and mice[J]. Neurobiol Dis, 2013, 6(54): 216-224. |
[20] | Bleilevens C, Roehl AB, Goetzenich A, et al.Effect of anesthesia and cerebral blood flow on neuronal injury in a rat middle cerebral artery occlusion (MCAO) model[J]. Exp Brain Res, 2013, 224(2): 155-164. |
[21] | Dong Y, Zhao R, Chen XQ, et al.14-3-3gamma and neuroglobin are new intrinsic protective factors for cerebral ischemia[J]. Mol Neurobiol, 2010, 41(2/3): 218-231. |
[22] | Degterev A, Huang Z, Boyce M, et al.Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury[J]. Nat Chem Biol, 2005, 1(2): 112-119. |
[23] | Northington FJ, Chavez-Valdez R, Graham EM, et al.Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI[J]. J Cereb Blood Flow Metab, 2011, 31(1): 178-189. |
[24] | Chavez-Valdez R, Martin LJ, Flock DL, et al.Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia[J]. Neuroscience, 2012, 6(219): 192-203. |
[25] | Hashimoto Y, Ito Y, Niikura T, et al.Mechanisms of neuroprotection by a novel rescue factor humanin from swedish mutant amyloid precursor protein[J]. Biochem Biophys Res Commun, 2001, 283(2): 460-468. |
[26] | Xu XS, Chu CC, Gao JP, et al.Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway[J]. Brain Res, 2008, 28(1227): 12-18. |
[27] | Lo EH, Dalkara T, Moskowitz MA, et al.Mechanisms, challenges and opportunities in stroke[J]. Nat Rev Neurosci, 2003, 4(5): 399-415. |
[28] | Xu X, Chua KW, Chua CC, et al.Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury[J]. Brain Res, 2010, 1355: 189-194. |
[29] | Russell JC, Szuflita N, Khatri R, et al.Transgenic expression of human FGF-1 protects against hypoxic-ischemic injury in perinatal brain by intervening at caspase-XIAP signaling cascades[J]. Neurobiol Dis, 2006, 22(3): 677-690. |
[30] | Lenhard T, Schober A, Suter-Crazzolara C, et al.Fibroblast growth factor-2 requires glial-cell -line-derived neurotrophic factor for exerting its neuroprotective actions on glutamate-lesioned hippocampal neurons[J]. Mol Cell Neurosci, 2002, 20(2): 181-197. |
[31] | Shang J, Deguchi K, Yamashita T, et al.Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats[J]. J Neurosci Res, 2010, 88(10): 2197-2206. |
[32] | Scheepens A, Sirimanne E, Beilharz E, et al.Alterations in the neural growth hormone axis following hypoxic-ischemic brain injury[J]. Brain Res Mol Brain Res, 1999, 68(1/2): 88-100. |
[33] | Shin DH, Lee E, Kim JW, et al.Protective effect of growth hormone on neuronal apoptosis after hypoxia-ischemia in the neonatal rat brain[J]. Neurosci Lett, 2004, 354(1): 64-68. |
[34] | Chung H, Kim E, Lee DH, et al.Ghrelin inhibits apoptosis in hypothalamic neuronal cells during oxygen-glucose deprivation[J]. Endocrinology, 2007, 148(1): 148-159. |
[35] | Lang JT, McCullough LD. Pathways to ischemic neuronal cell death: are sex differences relevant[J]? J Transl Med, 2008, 9(23): 6-33. |
[36] | Won CK, Ji HH, Koh PO, et al.Estradiol prevents the focal cerebral ischemic injury-induced decrease of forkhead transcription factors phosphorylation[J]. Neurosci Lett, 2006, 398(1/2):39-43. |
[37] | McCullough L, Hurn P. Estrogen and ischemic neuroprotection: an integrated view[J].Trends Endocrin Metab, 2003, 14(5): 228-235. |
[38] | Pérez-Álvarez MJ, Mazal M, Antonl M, et al. Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia[J]. J Neuroinflammation, 2012, 7(2): 9-15. |
[39] | Hoffman GE MI, Zup SL.Neuroprotection by ovarian hormones in animal models of neurological disease[J]. Endocrine, 2006, 29(2): 217-231. |
[40] | Fischer-Colbrie R, Laslop A, Kirchmair R.Secretogranin II: molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin[J]. Prog Neurobiol, 1995,46(1):49-70. |
[41] | Gasser MC, Berti I, Hauser KF, et al.Secretoneurin promotes pertussis toxin-sensitive neurite outgrowth in cerebellar granule cells[J]. Neurochem, 2003, 85(3):662-669. |
[42] | Marti E, Ferrer I, Blasi J.Differential regulation of chromogranin A, chromogranin B and secretoneurin protein expression after transient forebrain ischemia in the gerbil[J]. Acta Neuropohl, 2001, 101(2):159-166. |
[43] | Shyu WC, Lin SZ, Chiang MF, et al.Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke[J] .J Clin Invest,2008 , 118(1):133-147. |
[44] | Borlongan CV, Hayashi T, Oeltgen PR, et al.Hibernation-like state induced by an opioid peptide protects against experimental stroke[J]. BMC Biol, 2009, 6(17): 7-31. |
[45] | Zheng YJ, Wang XR, Chen HZ, et al.Protective effects of the delta opioid peptide [D-Ala2, D-Leu5]enkephalin in an ex vivo model of ischemia/reperfusion in brain slices[J]. CNS Neurosci Ther, 2012, 18(9):762-766. |
[46] | Tian X, Guo J, Zhu M, et al.δ-opioid receptor activation rescues the functional TrkB receptor and protects the brain from ischemia-reperfusion injury in the rat[J]. PLoS One, 2013, 8(7):e69252. |
[47] | Yang L, Wang H, Shah K, et al.Opioid receptor agonists reduce brain edema in stroke[J]. Brain Res, 2011, 1383: 307-316. |
[48] | Stemer A, Lyden P.Evolution of the thrombolytic treatment window for acute ischemic stroke[J]. Curr Neurol Neurosci Rep, 2010, 10(1):29-33. |
[49] | Lee ST, Chu K, Jung KH, et al.MicroRNAs induced during ischemic preconditioning[J]. Stroke, 2010, 41(8):1646-1651. |
[50] | Liu C, Peng Z, Zhang N, et al.Identification of differentially expressed microRNAs and their PKC-isoform specific gene network prediction during hypoxic preconditioning and focal cerebral ischemia of mice[J]. J Neurochem, 2012, 120(5):830-841. |
[51] | Stapels M, Piper C, Yang T, et al.Polycomb group proteins as epigenetic mediators of neuroprotection in ischemic tolerance[J].Neuroscience, 2010, 3:111-115. |
[1] | HE Lihua, ZHU Xiuzhi, JIANG Yizhou. Research progress on immunotherapy for triple-negative breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 842-853. |
[2] | LI Shuang, HAN Shuzhen, DAI Yuting, XIU Minghui, DU Xianqin, HE Jianzheng, LIN Xingyao. Progress in the prevention and treatment of traditional Chinese medicine based on the mechanism of intestinal injury of various chemotherapy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 583-593. |
[3] | CAO Fang, QIN Kairong, ZHENG Guoshuang, ZHAO Dewei. Exploring the intervention mechanism of Ginkgo biloba for steroid-induced necrosis of the femoral head based on network pharmacology [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(3): 266-275. |
[4] | ZHANG Li, LIN Xingyao, SHANG Yun, WANG Qiang. Progress on the pathological mechanism and treatment of frostbite [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(3): 347-354. |
[5] | LI Xinyu, HUANG Xin. State of clinical application of meloxicam [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 189-197. |
[6] | CHEN Yulin, JIANG Hugang, WANG Xinqiang, LIU Kai, LI Yingdong, AN Tao, ZHAO Xinke. Effects and mechanism of Ginseng Yixin granules (QSYXG) for heart failure with preserved ejection fraction based on the network pharmacology and molecular docking strategy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1081-1092. |
[7] | LIU Dan, LIU Ming, JIN Liangyou, PAN Juan, XIN Haoru, LIU Mengyuan, LI Xin, ZHENG Kun, FENG Xiaoling. Research progress on the antitumor activity of costunolide [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1168-1176. |
[8] | SHAO Mingkun, LIU Rong, SUN Pin, GUAN Shui, LIAO Bingcan, LI Sha, CONG Tao, LIANG Kai, MA Hui, SUN Changkai. Human body networks mechanisms of melatonin and its clinical applications [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1031-1040. |
[9] | ZHANG Wei, WANG Yingbin, CAO Lu, LIU Yan, ZHANG Li, LIU Jieting. Research progress of autophagy in intestinal ischemia-reperfusion injury [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1061-1066. |
[10] | WANG Liang, ZHANG Hulin, WANG Xiaomin, YANG Chaoqiang, WANG Yican, LAI Xueqian. Research progress on the mechanism of iron overload in the occurrence and development of osteoarthritis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1075-1080. |
[11] | HAN Xiaoxia, LENG Yufang, LV Xingjiao, HOU Xiaoyu, CAO Xuefen, Janvier NIBARUTA. Research progress on the role and mechanism of irisin in organ ischemia/reperfusion injury [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 886-891. |
[12] | DU Jie, ZHAO Tingting, WANG Dalong, CHEN Xiaodong, LIU Kexin, WU Jingjing. Role and research progress of CYP46A1 in neurodegenerative diseases [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 925-935. |
[13] | LI Miao, YU Qinwei, JIANG Zhenzhou, ZHANG Luyong, . Regulatory mechanism of LDLR and research progress of its related diseases and drugs [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 946-954. |
[14] | DING Hao, GAO Zhenhua, ZHENG Yun. Research progress of microRNA in diagnosis and treatment of prostate cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 696-708. |
[15] | WANG Kai, SONG Min, SONG Zhijing, LI Jinyi. Mechanism of vascular endothelial cells ferroptosis in cervical spondylosis of vertebral artery type [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(5): 588-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||