[1] Daniel O, Denis D. Perspective:The role of human breast-milk extracellular vesicles in child health and disease[J]. Adv Nutr,2021,12:59-70. [2] Valadi H, Ekstrom K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells[J]. Nat Cell Biol, 2007, 9(6): 654-659. [3] Le Doare K, Holder B, Bassett A, et al. Mother's milk: A purposeful contribution to the development of the infant microbiota and immunity[J]. Front Immunol, 2018, 9: 361. [4] Melnik BC, Schmitz G. MicroRNAs: Milk's epigenetic regulators[J]. Best Pract Res Clin Endocrinol Metab, 2017, 31(4): 427-442. [5] Melnik BC, Schmitz G. MicroRNAs: Milk's epigenetic regulators[J]. Best Pract Res Clin Endocrinol Metab, 2017, 31(4): 427-442. [6] Alsaweed M, Hepworth AR, Lefevre C, et al. Human milk microRNA and total RNA differ depending on milk fractionation[J]. J Cell Biochem, 2015, 116(10): 2397-2407. [7] Zhou Q, Li M, Wang X, et al. Immune-related microRNAs are abundant in breast milk exosomes[J]. Int J Biol Sci, 2012, 8(1): 118-123. [8] Emelie A, Ahmed A, Rebecka T, et al. Breast milk microRNAs: Potential players in oral tolerance development[J]. Frontiers in Immunology, 2023, 3(14):1154211. [9] Pan W, Zhu S, Yuan M, et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1[J]. J Immunol, 2010, 184(12): 6773-6781. [10] Reif S, Elbaum Shiff Y, Golan-Gerstl R. Milk-derived exosomes(MDEs) have a different biological effect on normal fetal colon epithelial cells compared to colon tumor cells in a miRNA-dependent manner[J]. J Transl Med, 2019, 17(1): 325. [11] Melnik BC, Stremmel W, Weiskirchen R, et al. Exosome-derived microRNAs of human milk and their effects on infant health and development[J].Biomolecules, 2021,11(6):851. [12] Chen Z, Xie Y, Luo J, et al. Milk exosome-derived miRNAs from water buffalo are implicated in immune response and metabolism process[J]. BMC Vet Res, 2020, 16(1): 123. [13] Bauer J, Gerss J. Longitudinal analysis of macronutrients and minerals in human milk produced by mothers of preterm infants[J]. Clin Nutr, 2011, 30(2): 215-220. [14] Lewallen LP. Breastfeeding is important for cognitive development in term and preterm infants[J]. Evid Based Nurs, 2012,15:85-86. [15] Yu B, Jiang Y, Wang X, et al. An integrated hypothesis for miR-126 in vascular disease[J]. Med Res Arch, 2020, 8(5):2133. [16] Chu M, Zhao Y, Feng Y, et al. MicroRNA-126 participates in lipid metabolism in mammary epithelial cells[J]. Mol Cell Endocrinol, 2017, 454: 77-86. [17] Pavlek L, Vudatala S, Bartlet C, et al. MiR-29b is associated with perinatal inflammation in extremely preterm infants[J]. Pediatr Res,2021, 89(4):889-893. [18] Sugar S, Heyob K, Cheng X, et al. Perinatal inflammation alters histone 3 and histone 4 methylation patterns:Effects of miR-29b supplementation[J]. Redox Biol,2021,38:101783. [19] Marttila S, Rovio S, Mishra P, et al. Adulthood blood levels of hsa-miR-29b-3p associate with preterm birth and adult metabolic and cognitive health[J]. Sci Rep, 2011,11:9203. [20] Wang X, Yan X, Zhang L, et al. Identification and peptidomic profiling of exosomes in preterm human milk: Insights into necrotizing enterocolitis prevention[J]. Mol Nutr Food Res, 2019, 63(13): e1801247. [21] Lin J, Huo R, Xiao L, et al. A novel p53/microRNA-22/Cyr61 axis in synovial cells regulates inflammation in rheumatoid arthritis[J]. Arthritis Rheumatol, 2014,66(1):49-59. [22] Yang Z, Qin W, Huo J, et al. MiR-22 modulates the expression of lipogenesis-related genes and promotes hepatic steatosis in vitro[J]. FEBS Open Bio, 2021,11(1):322-332. [23] Thibonnier M, Esau C, Ghosh S, et al. Metabolic and energetic benefits of microRNA-22 inhibition[J]. BMJ Open Diabetes Res Care,2020,8(1): e001478. [24] Chu M, Zhao Y, Feng Y, et al. MicroRNA-126 participates in lipid metabolism in mammary epithelial cells[J]. Mol Cell Endocrinol,2017,454:77-86. [25] Ru P, Guo D. MicroRNA-29 mediates a novel negative feedback loop to regulate SCAP/SREBP-1 and lipid metabolism[J]. RNA Dis,2017,4(1):e1525. [26] Mir BA, Albrecht E, Ali A, et al. MicroRNA-100 reduced fetal bovine muscle satellite cell myogenesis and augmented intramuscular lipid deposition by modulating IGF1R[J]. Cells,2022,11(3):451. [27] Barreiro R, Regal P, Lopez-Racamonde O, et al. Comparison of the fatty acid profile of Spanish infant formulas and Galician women breast milk[J]. J Physiol Biochem, 2018, 74(1): 127-138. [28] Robinson DT, Martin CR. Fatty acid requirements for the preterm infant[J]. Semin Fetal Neonatal Med, 2017, 22(1): 8-14. [29] Ferraro L, Ravo M, Nassa G, et al. Effects of oestrogen on microRNA expression in hormone-responsive breast cancer cells[J]. Horm Cancer, 2012, 3(3): 65-78. |