Chinese Journal of Clinical Pharmacology and Therapeutics ›› 2008, Vol. 13 ›› Issue (5): 589-595.
Previous Articles Next Articles
AN Na-qin, DING Xuan-sheng
Received:
2008-03-18
Revised:
2008-04-22
Published:
2020-11-09
CLC Number:
AN Na-qin, DING Xuan-sheng. Mechanisms and changes of endogenous vasoconstrictive substances in development of diabetic nephropathy[J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2008, 13(5): 589-595.
[1] Nguyen G.Increased cyclooxygenase-2, hyperfiltration, glomerulosclerosis, and diabetic nephropathy: put the blame on the (pro) renin receptor[J]. Kidney Int, 2006, 70(4): 618-620. [2] Huang Y, Wongamorntham S, Kasting J, et al.Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms[J]. Kidney Int, 2006, 69 (1): 105-113. [3] Persson F, Rossing P, Schjoedt KJ, et al.Time course of the antiproteinuric and antihypertensive effects of direct renin inhibition in type 2 diabetes[J]. Kidney Int, 2008, doi: 10.1038/ki.2008.68. [4] Kagami S, Border WA, Miller DE, et al.Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells[J]. J Clin Invest, 1994, 93(6): 2431-2437. [5] Papakonstantinou E, Roth M, Kokkas B.Losartan inhibits the angiotensin II-induced modifications on fibrinolysis and matrix deposition by primary human vascular smooth muscle cells[J]. J Cardiovasc Pharmacol, 2001, 38(5): 715-728. [6] Nose A, Mori Y, Uchiy ama-TanaKa Y, et al. Regulation of glucose transporter (GLUT1) gene expression by angiotensin ii in mesangial cells:involvement of HB-EGF and EGF receptor transactivation[J]. Hypertens Res, 2003, 26(1): 67-73. [7] Yoshimoto T, Hirata Y.Aldosterone as a cardiovascular risk hormone[J]. Endocr J, 2007, 54(3): 359-370. [8] Yuan J, Jia R, Bao Y.Beneficial effects of spironolactone on glomerular injury in streptozotocin-induced diabetic rats[J]. J Renin Angiotensin Aldosterone Syst, 2007, 8 (3): 118-126. [9] Han KH, Kang YS, Han SY, et al.Spironolactone ameliorates renal injury and connective tissue growth factor expression in type II diabetic rats[J]. Kidney Int, 2006, 70(1): 111-120. [10] Guo C, Martinez-Vasquez D, Mendez GP, et al.Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus[J]. Endocrinology, 2006, 147(11): 5363-5373. [11] Van den Meiracker AH, Baggen RG, Pauli S, et al.Spironolactone in type 2 diabetic nephropathy: Effects on proteinuria, blood pressure and renal function[J]. J Hypertens, 2006, 24(11): 2285-2292. [12] Epstein M, Williams GH, Weinberger M, et al.Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes[J]. Clin J Am Soc Nephrol, 2006, 1(5): 940-951. [13] Minchenko AG, StevensMJ, White L, et al.Diabetes-induced overexpression of endothelin-1 and endothelin receptors in the rat renal cortex is mediated via poly (ADP-ribose) polymerase activation [J]. FASEB J, 2003, 17 (11): 1514-1516. [14] Ebihara I, Nakamura T, Tomino Y, et al.Effect of a specific endothelin receptor A antagonist and an angiotensinconverting enzyme inhibitor on glomerular mRNA levels for extracellular matrix components, metalloproteinases (MMP) and a tissue inhibitor of MMP in aminonucleoside nephrosis[J]. Nephrol Dial Transplant, 1997, 12 (5): 1001-1006. [15] Sasser JM, Sullivan JC, Hobbs JL, et al. Endothelin A receptor blockade reduces diabetic renal injury via an antiinflammatory mechanism[J]. J Am Soc Nephrol, 2007, 18 (1): 143-154. [16] Pfab T, Thöne-Reineke C, Theilig F, et al.Diabetic endothelin B receptor-deficient rats develop severe hypertension and progressive renal failure[J]. J Am Soc Nephrol, 2006, 17(4): 1082-1089. [17] Cosenzi A, Bernobich E, Trevisan R, et al. Nephroprotective effect of bosentan in diabetic rats[J]. J Cardiovasc Pharmacol, 2003, 42(6): 752-756. [18] Hocher B, Schwarz A, Reinbacher D, et al.Effects of endothelin receptor antagonists on the progression of diabetic nephropathy[J]. Nephron, 2001, 87(2): 161-169. [19] Hayama M, Akiba S, Fukuzumi M, et al.High glucoseinduced cytosolic phospholipase A2 activation responsible for eicosanoid production in rat mesangial cells[J]. J Biochem, 1997, 122(6): 1196-1201. [20] Kiritoshi S, Nishikawa T, Sonoda K, et al.Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells:potential role in diabetic nephropathy[J]. Diabetes, 2003, 52(10): 2570-2577. [21] Hishinuma T, Tsukamoto H, Suzuki K, et al. Relationship between thromboxane/prostacyclin ratio and diabetic vascular complications[J]. Prostaglandins Leukot Essent Fatty Acids, 2001, 65(4): 191-196. [22] Makino H, Mukoyama M, Sugawara A, et al.Roles of connective tissue growth factor and prostanoids in early streptozotocin-induced diabetic rat kidney: the effect of aspirin treatment[J]. Clin Exp Nephrol, 2003, 7(1): 33- 40. [23] Sebeková K, Eifert T, Klassen A, et al.Renal effects of S18886 (Terutroban), a TP receptor antagonist, in an experimental model of type 2 diabetes[J]. Diabetes, 2007, 56(4): 968-974. [24] Christopher J, Jaffa AA. Diabetes modulates the expression of glomerular kinin receptors[J]. Int Immunopharmacol, 2002, 2(13/14): 1771-1779. [25] Simard B, Gabra BH, Sirois P.Inhibitory effect of a novel bradykinin B1 receptor antagonist, R-954, on enhanced vascular permeability in type 1 diabetic mice[J]. Can J Physiol Pharmacol, 2002, 80(12): 1203-1207. [26] Allard J, Bulé on M, Cellier E, et al.ACE inhibitor reduces growth factor receptor expression and signaling but also albuminuria through B2-kinin glomerular receptor activation in diabetic rats[J]. Am J Physiol Renal Physiol, 2007, 293(4): 1083-1092. [27] Tan Y, Wang B, Keum JS, et al. Mechanisms through which bradykinin promotes glomerular injury in diabetes [J]. Am J Physiol Renal Physiol, 2005, 288(3): 483- 492. [28] Tan Y, Keum JS, Wang B, et al.Targeted deletion of B2-kinin receptors protects against the development of diabetic nephropathy[J]. Am J Physiol Renal Physiol, 2007, 293(4): 1026-1035. [29] Langham RG, Kelly DJ, Gow RM, et al.Increased expression of urotensin II and urotensin II receptor in human diabetic nephropathy[J]. Am J Kidney Dis, 2004, 44(5): 826-831. [30] Clozel M, Hess P, Qiu C, et al. The urotensin-II receptor antagonist palosuran improves pancreatic and renal function in diabetic rats[J]. J Pharmacol Exp Ther, 2006, 316 (3): 1115-1121. [31] Sidharta PN, Wagner FD, Bohnemeier H, et al.Pharmacodynamics and pharmacokinetics of the urotensin II receptor antagonist palosuran in macroalbuminuric, diabetic patients[J]. Clin Pharmacol Ther, 2006, 80(3): 246-256. [32] Bardoux P, Martin H, Ahloulay M, et al.Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus:study in vasopressin-deficient Brattleboro rats[J]. Proc Natl Acad Sci USA, 1999, 96(18): 10397-10402. [33] Bardoux P, Bichet DG, Martin H, et al. Vasopressin increases urinary albumin excretion in rats and humans:involvement of V2 receptors and the renin-angiotensin sy stem [J]. Nephrol Dial Transplant, 2003, 18(3): 497-506. [34] Bardoux P, Bruneval P, Heudes D, et al.Diabetes-induced albuminuria: role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in rats[J]. Nephrol Dial Transplant, 2003, 18(9): 1755-1763. [35] Gomez-Garre D, Ruiz-OrtegaM, Ortego M, et al.Effects and interactions of endothelin-1 and angiotensinⅡ on matrix protein expression and synthesis and mesangial cell growth[J]. Hypertension, 1996, 27(4): 885-892. |
[1] | HE Lihua, ZHU Xiuzhi, JIANG Yizhou. Research progress on immunotherapy for triple-negative breast cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(8): 842-853. |
[2] | LI Shuang, HAN Shuzhen, DAI Yuting, XIU Minghui, DU Xianqin, HE Jianzheng, LIN Xingyao. Progress in the prevention and treatment of traditional Chinese medicine based on the mechanism of intestinal injury of various chemotherapy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(5): 583-593. |
[3] | CAO Fang, QIN Kairong, ZHENG Guoshuang, ZHAO Dewei. Exploring the intervention mechanism of Ginkgo biloba for steroid-induced necrosis of the femoral head based on network pharmacology [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(3): 266-275. |
[4] | ZHANG Li, LIN Xingyao, SHANG Yun, WANG Qiang. Progress on the pathological mechanism and treatment of frostbite [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(3): 347-354. |
[5] | LI Xinyu, HUANG Xin. State of clinical application of meloxicam [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(2): 189-197. |
[6] | CHEN Yulin, JIANG Hugang, WANG Xinqiang, LIU Kai, LI Yingdong, AN Tao, ZHAO Xinke. Effects and mechanism of Ginseng Yixin granules (QSYXG) for heart failure with preserved ejection fraction based on the network pharmacology and molecular docking strategy [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1081-1092. |
[7] | LIU Dan, LIU Ming, JIN Liangyou, PAN Juan, XIN Haoru, LIU Mengyuan, LI Xin, ZHENG Kun, FENG Xiaoling. Research progress on the antitumor activity of costunolide [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2023, 28(10): 1168-1176. |
[8] | SHAO Mingkun, LIU Rong, SUN Pin, GUAN Shui, LIAO Bingcan, LI Sha, CONG Tao, LIANG Kai, MA Hui, SUN Changkai. Human body networks mechanisms of melatonin and its clinical applications [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1031-1040. |
[9] | ZHANG Wei, WANG Yingbin, CAO Lu, LIU Yan, ZHANG Li, LIU Jieting. Research progress of autophagy in intestinal ischemia-reperfusion injury [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1061-1066. |
[10] | WANG Liang, ZHANG Hulin, WANG Xiaomin, YANG Chaoqiang, WANG Yican, LAI Xueqian. Research progress on the mechanism of iron overload in the occurrence and development of osteoarthritis [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(9): 1075-1080. |
[11] | HAN Xiaoxia, LENG Yufang, LV Xingjiao, HOU Xiaoyu, CAO Xuefen, Janvier NIBARUTA. Research progress on the role and mechanism of irisin in organ ischemia/reperfusion injury [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 886-891. |
[12] | DU Jie, ZHAO Tingting, WANG Dalong, CHEN Xiaodong, LIU Kexin, WU Jingjing. Role and research progress of CYP46A1 in neurodegenerative diseases [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 925-935. |
[13] | LI Miao, YU Qinwei, JIANG Zhenzhou, ZHANG Luyong, . Regulatory mechanism of LDLR and research progress of its related diseases and drugs [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(8): 946-954. |
[14] | JIN Yiyi, ZHOU Keting, YANG Chengcheng, XU Ping, ZHU Suyan. Osthole attenuates diabetes-induced renal injury by regulating NF-κB and p38/MAPK pathway mediated inflammatory responses [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 622-631. |
[15] | DING Hao, GAO Zhenhua, ZHENG Yun. Research progress of microRNA in diagnosis and treatment of prostate cancer [J]. Chinese Journal of Clinical Pharmacology and Therapeutics, 2022, 27(6): 696-708. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||